0010001101010100010001011010101010010101001000100
011010110101010101010 10101010110101011010101
01101011010101010101 1001010110101011010101
00100011010101000100 1001010010101001000100
10010100101010101000 100101000010100101010
011010000100010100000 1000010001011010001
0100101010101001011011010101010101010010010010101

Reverse Engineering in the 2020s

Where are we, and where should we go?

Brendan Dolan-Gavitt

e e .
Y e o

S 5 ST
R i statd
o

-

.

s

-
D e i R S s

-
iy =
et bl .MJ—';

-

- i

DSl it s

iy -

g g0

e W

B — i .,

A i P T s S rve

o,
" e’ W W ging
g 4,
A e - gl

N e

-
ot

T
e

v

s g

.N._._.
il
,1”
. i
i

i

i

i

-

7 P it M g
-‘.’-u

/

=2 =

Why Reverse Engineering?

I. Motivation

Reverse Engineering (RE) 1s the process of discovering Repeatable Reverse
undocumented internal principles of a piece of code. Why Engineering with
would anyone who 1s not a criminal want to do that? We PANDA, 2014

* |Long ago (the 2000s), the field of reverse engineering had a slightly
disreputable reputation

* Are you trying to steal someone else’s intellectual property??

* But there are lots of good reasons to reverse engineer!

Malware Analysis Interoperability

Software Archaeology Uncovering

Hidden

Vulnerability Discovery Debugging Behavior

How | Got Here

o Started working on reverse engineering to support Windows memory
forensics

 Expanded into memory analysis for virtualization security (translation:
same thing, but from a hypervisor)

* Built systems for supporting reverse engineering through whole-
system dynamic analyses (PANDA, Malrec)

 Worked on automating reverse engineering for rehosting — emulating
embedded devices

» Side projects on neural decompilation, fuzzing

* Basic problem: how do you extract the live state of a system from a memory

Reverse Engineering for Memory Forensics

dump?

 Answer: by reverse engineering the Windows NT kernel, of course!

* You can get lots of cool stuff from this:

Lists of running processes, loaded DLLs
Information about active network connections

Registry data as it appeared in memory

=
Recycle Bin

Administrator: Command Prompt

AdobeX;Qeader C:\Windows\system32>

& Windows Task Manager
File Options View Help

Dy -
" {
riou

Applications Performance | Networking | Users

v i L 1
"mrarmetr
-l NG TN S v

winlogon.exe

4y Show processes from all users End Process

Processes: 33 CPU Usage: 17% Physical Memoery: 30% Windows 7

Build 7601
This copy of Windows is not genuine

= W)

FoldexView

Administratox: Command Prompt

windows Task Managerx

rabl

Processes

&Show processes from all users'

&End Process

Start

Runming applications

Usex Promoted

2:54 AM

brendan@charna: “/Volatility-1,3_Betas sudo puthon wolatility window_list -x 4[]

&

pyASTaYEd]

otilndaccallzacior-
cUfrEnt oy

moul xRanresiac™s awmcviever localhost]

ntoskril.exe

https://
www.youtube.co

m/watch?
v=Cco6OMISoDXrw

CArOMEepaEss7ip

W

XA

I LOTTI AL

] brendan@dharma: . [movix@amnesia: ~)) moyix@amnesia

https://www.youtube.com/watch?v=c6OMlSoDXrw
https://www.youtube.com/watch?v=c6OMlSoDXrw
https://www.youtube.com/watch?v=c6OMlSoDXrw
https://www.youtube.com/watch?v=c6OMlSoDXrw

Whole-System Dynamic Analysis
Breaking Spotify DRM

« DRM has a strong signature
* High entropy, high randomness (X2) input
* High entropy, low randomness (x2) output

 We can look for functions that match this description

 Then just hook their output, and save it!

Whole-System Dynamic Analysis

Censorship Blacklist Extraction

 LINE Is a Japanese-made IM app for
Android with ~560M users worldwide

 Found by CitizenLab to censor some
words for Chinese users

e \We wanted to find out which ones

* \ery simple strategy: search every
memory read & write to find usage of
strings likely to be in “bad words” list

(% (Falun), X% (Tiananmen))

 Dump everything else passing
through that point

O@WilAD®

Error

This message contains forbidden
words and cannot be sent.

Tester

Censorship Blacklist (sample)

198904
FLG
GCD

For translations & context see https://china-chats.net/

s
[EE

YY)
HERSK
ERERE
= NAl
a1

K22TT

A

L
H[HE
L
EH /1
/__/)Ei
1 &

/_

| I
s

|~
I~

I

T

—

N
e

< WE T
—

gl
B

AL
K EF
FREF
Z I
B
Z) 5)@

—

\—\,L

717‘

128
%/Eﬂ
37

A
ZIN\ 7\

I

N/
|
I

https://china-chats.net/

Themes in RE Research Over Time

* QOver the past 20 years, academic research in reverse engineering has
undergone some substantial shifts

* X86 software running on desktops -> many architectures, desktop/
embedded/mobile

* Closed tools, hard to reproduce -> open artifacts, good open source tools

* Reverse engineering to support X -> papers studying RE itself regularly in
top conferences

Then: Closed Tools, Poor Reproducibility

* |t used to be very common to release papers with no accompanying code
* This made it extremely difficult to build on prior research

 Each group needed to reimplement the history of the field before they could
make any new progress!

* Particularly for areas that require significant amounts of system-building,
this cost quickly exceeds what anyone is willing to do for a single paper.

* | speculate this Is one reason why there was so little progress in
decompilation and binary type inference for almost 20 years

Example: Retypd

(Details from Bosamiya et al.’s TRex paper at USENIX Sec 2025)

* Originally presented at PLDI in 2016 by Noonan et al. (GrammaTech)
e In 2021, released open source (&

e ...well, kind of. Actually, reimplemented by a different GrammaTech
employee after the original author had left.

 They found it very difficult!

IIndeed for one paper [25], other employees at the same company at-
tempting to reproduce the work stated that “[i1]t 1s a powerful system but
difficult to understand” and the “presentation is very dense and subtle” [12].

https://github.com/GrammaTech/retypd/blob/
f8dd2314/78c3e1722d0d160c3ct99c628a25/reference/type-recovery.rst

https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst

Now: Open Tools and Artifact Evaluation!

9910 L
710102016
901010010t
' 10100110

2201002

ARTIFACT TRex: Practical Type Reconstruction for Binary Code
EVALUATED
é’ usenix Jay Bosamjyalt Maverick Woo?, and Bryan Parno?
4 ASSOCIATION
I Microsoft Research

AVAILABLE 2Carnegie Mellon University

Then: Reverse Engineering for X

 Reverse engineering was most often a supporting discipline
* |t was fairly rare to see top conference papers dedicated to RE itself!

* |nstead, you would find papers that came up with some cool new technique
for binary analysis, and then applied it the topic du jour:

* Botnets (e.g., automated RE of network protocols)

* Vulnerability discovery (e.g., CGC & binary fuzzing work)

e Debloati ng This paper is essentially an automated reverse
engineering paper disguised as a debloating
papetr.... and | like ft.

— Anonymous Reviewer of our IEEE S&P 2022 paper, IRQDebloat

Now: Reverse Engineering on Ilts Own

e |ncreased Interest In:

 Decompilation: https://mahaloz.re/dec-progress-2024

* [ype reconstruction
* Reliable disassembly (and reassembly)
* Fuzzing of binary software

 Automated reverse engineering of embedded devices (rehosting)

https://mahaloz.re/dec-progress-2024

Fulfilling the Potential of RE?

* Reverse engineering has the potential to help return control of software back
to its users

* This is important since software increasingly mediates so much of what we do
every day: how we talk to other people, the devices in our homes, even the
code that runs on cars and trains

 We have seen many examples of how reverse engineering can be used as a
force for good, uncovering bad behavior in software systems

Notable Examples of “RE for Good”

Sony Rootkit (2005)
Mark’s Sysinternal

Monday, October 31, 2005

Sony, Rootkits And Digital Rights Management Gone Too Far

Last week when | was testing the latest version of RootkitRevealer (RKR) | ran a scan on one of my
systems and was shocked to see evidence of a rootkit. Rootkits are cloaking technologies that hide
files, Registry keys, and other system objects from diagnostic and security software, and they are
usually employed by malware attempting to keep their implementation hidden (see my “Unearthing
Rootkits” article from thre June issue of Windows IT Pro Magazine for more information on rootkits).
The RKR results window reported a hidden directory, several hidden device drivers, and a hidden
application:

* RootkitRevealer - Sysinternals: www.sysinternals.com
Fle Options Help

Fath Tmestamp Size Descrpton
Y HELM\SOFTWARE \sysreferance 10/29/2006 523 AM Obstes Hidden from 'Windows AP
a‘ HELMASYSTEM\Controf5 e2D01\S esvices\$spstanas 10/29/2005 6:46 PM Obyte: Hudden from 'Wndows AP,
¥ HELM\SYSTEM\ControlS e2001\S ervices\$spscor 10/29/2005 65:46 PM Obste: Hudden from 'Wndows AP
S HKLM\SYSTEM\ControlS etD01\S ervices\$systorates 10/29/2005 6:47 PM Obytes Hudden from ‘Windows AP
MY HELM\SYS TEM\ControlS et001\S esvices'\spsDAMS erves 10/29/2006 300 PM Obste: Hudden from 'Windowes AP
2 HELM\SYSTEM\ControlS e001\S ervices\$systoct 10/729/2005 6:43 PM Obytes Hidden from ‘Windows AP
MY HELM\SYS TEM\ControlS et00S ervices\ zpsanes 10/29/2005 b:46 PM Obste: Hudden from 'Wndows AP
ﬁ HEKLMASYSTEM\ControlS st D03\S esvices\Sspsteon 10/29/2005 6. 46 PM Obsptes Hudden from 'Windows AP

https:.//web.archive.org/web/20051102053346/http://www.sysinternals.com/blog/
2005/10/sony-rootkits-and-digital-rights.html

https://web.archive.org/web/20051102053346/http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html
https://web.archive.org/web/20051102053346/http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html

Notable Examples of “RE for Good”

CitizenLab Reverse Engineering of Malware Targeting Activists

AL e AN v a ”) o
R e \f“‘. SRS T .t
e ORI S 2 82, '
, Dond Tatuh s
{»,fﬁgﬁu;‘. 2 il
e ¢

0

Text Message

T -
o Today 1:44 PM

Today 9:38 AM

DOLLAR

Ol lel s e Sagaa

DEQSJI . 3.!,4." ¢ '::_!\,,._

2% R
- B} =
B Nebadv.co

SlyLe] aisd e Saaa 5l
 https:// : gl s o8
sms.webadv.co/

D I SS I D EN I Figure 3: SMS text messages received by Mansoor (English: "New secrets about torture of
Emiratis in state prisons"). The sender’s phone numbers are spoofed.

NSO Group’s iPhone Zero-Days ——
used against a UAE Human Rights | I é’
Defender i .

| > - <y |
By Bill Marczak and John Scott-Railton 5 [ey ﬁ o o ﬁ P ﬁ
A ' :’e::‘::: Innl[a;‘:h/m.st:‘latbn > @
Station SMS Gateway

httpS://Cltlzen Iab-Ca/201 6/08/m I I I IOn_dOI Iar_ Figure 6: Di:agram from purported NSQ Qroup Pegasus documenta.tion showing the sequence
d ISSIdent-IphOne—ZerO—day-nSO-g rou p_uae/ through which the spyware (“Agent”) is installed on a target’s mobile device. Source: Hacking

Team Emails.

https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/

Notable Examples of “RE for Good”

‘“DieselGate” and other “Defeat Devices”

Vehicle speed

Actual Distance

Upper Bound

Urea (NH3) Dosing

Mode Selection
NOx exhaust massflow

Dose before Mux
(main model output)

Dose after Mux
(selected model
output)

https://media.ccc.de/v/32c3-7331-the exhaust emissions scandal dieselgate

https://media.ccc.de/v/32c3-7331-the_exhaust_emissions_scandal_dieselgate

Notable Examples of “RE for Good”

‘“DieselGate” and other “Defeat Devices”

InjCrv_tNsCintThresMax_C

InjCrv_tNsCIntThresMin_C

EngDa_tFld

How They Did It: An Analysis of Emission R L

InjCrv_tNsFIThresMax_C

-

InjCrv_tNsFIThresMin_C
[}

Defeat Devices in Modern Automobiles

- . InjCrv_tNsOilThresMax_C

InjCrv_stNsCharCor
& Q =)

InjCrv_tNsOilThresMin_C

QOil_tSwmp l

Moritz Contag*, Guo Li', Andre Pawlowski*, Felix Domke?, P —
Kirill Levchenko!, Thorsten Holz*, and Stefan Savage! j? e
* Ruhr-Universitit Bochum, Germany, {moritz.contag, andre.pawlowski, thorsten.holz} @rub.de m E’“_,—
T University of California, San Diego, {gul027, klevchen, savage} @cs.ucsd.edu ;—’— : i g
! tmbinc @elitedvb.net B s>] OO :
e S S ®
In this paper, we present our analysis of two families of ,, -
software defeat devices for diesel engines: one used by the — T
Volkswagen Group to pass emissions tests in the US and Europe, all
and a second that we have found in Fiat Chrysler Automobiles. To @—*E'_, —es el] ’\/ 1 g soveon
carry out this analysis, we developed new static analysis firmware srse oY oo —— 0 ?
forensics techniques necessary to automatically identify known .\h — ST —’}
defeat devices and confirm their function. We tested about 900 e 2 | e [o}
firmware images and were able to detect a potential defeat device D—’j_j FF o © : o ran
in more than 400 firmware images spanning eight years. We T —— 1]
describe the precise conditions used by the firmware to detect a B ——— L—-s FF
test cycle and how it affects engine behavior. This work frames L <P ||
the technical challenges faced by regulators going forward and ASNon Skt o Reswn. CUR) e
highlights the important research agenda in providing focused . L S
software assurance in the presence of adversarial manufacturers. _,ITE FF ol 'T‘_
< (

https://cseweb.ucsd.edu/~klevchen/diesel-sp1/7.pdf

https://cseweb.ucsd.edu/~klevchen/diesel-sp17.pdf

Notable Examples of “RE for Good”

DragonSec RE of Anti-Repair Code in Newag Train Firmware

checkl = 53.13845 < lat && lat 53.13882 &&
< 17.99837;
check2 = 53.14453 < lat && lat 53.14828 &&
< 18.00555;
check3 = 52.17048 < lat && lat 52.17736 &&
< 21.54437;
checkd4 = 49.60336 < lat && lat < 49.60686 &&

< 20.70840
& (this—>lock function_test & 1);
check5 = 53.10244 < lat && lat < 53.10406 &&
< 18.08243;
checkb = 50.12608 < lat && lat < 50.12830 &&
< 19.38872;
check7 = 52.77292 < lat && lat < 52.77551 &&
< 18.22724;

https.//zaufanatrzeciastrona.pl/post/o-trzech-takich-co-zhakowali-prawdziwy-pociag-a-
nawet-30-pociagow/

https://zaufanatrzeciastrona.pl/post/o-trzech-takich-co-zhakowali-prawdziwy-pociag-a-nawet-30-pociagow/
https://zaufanatrzeciastrona.pl/post/o-trzech-takich-co-zhakowali-prawdziwy-pociag-a-nawet-30-pociagow/

But: RE I1s Not Accessible

» All of the (extremely cool) analyses just discussed required enormous
amounts of work by dedicated specialists

* There is too much software in the world, and too few reverse engineering
experts, for this to scale

 Even most “automated” analyses require significant expertise to use and may
not scale to real software

The Vision

Brendan Dolan-Gavitt 2 A -
@mMOoyixX

Speculating wildly, it feels like we may be getting close to something I've
dreamed about since grad school — making the software running on your
computer inspectable and understandable to the end user.

0 Brendan Dolan-Gavitt € @moyix - Mar 31, 2023

Entirely anecdotal, but ChatGPT+GPT-4 was *extremely* helpful recently for
figuring out why a closed-source program on Mac was crashing. | just attached

Xcode to it and fed in chunks of assembly, asking what the original ObjC/Swift
code might have been, until | hit root cause.

7:51 PM - Mar 31, 2023 - 8,977 Views

The Vision

Brendan Dolan-Gavitt € @moyix - Mar 31,2023 A oo

Imagine an interface that let you point to something and say "what does
this button do?" and it would pull out the relevant ASM, use GPT-4 (+trad
reverse engineering tools?) to summarize its functionality, and produce an
explanation linked to the original assembly.

O 1 () Q 19 1 1.6K N

Brendan Dolan-Gavitt € @moyix - Mar 31,2023 (o

You could maybe also combine this with some kind of whole-system
record/replay (with a smallish event buffer) so that you could ask questions
events that happened on your system, like "Why did that window just pop
up?"

Q2 () Q 15 il 1.4K 1 &

The Vision

bl

&sx

" Will clicking this preserve the text in

Could not establish connecti¢

to" the file | had open?

": Connecting with SSH timed
out.

Close Remote

Retry

More Actions...

TERMINAL [>-] Remote - SSH: Session Troubleshooting M T ---

The Vision

What on earth does this mean?

The uuid parameter =
is recurring

OK

O}l T

Scan Code Enter Number

The Vision

Ente

N

®

Click Report to send more
information to the 1Password
team.

lgnore

Report

Send Later

What information would be

Sy

included in this report, and where will it

be sent?

Early Signs of Life?

Full transcript: https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aedeS16ace

* Anecdote: | was doing my taxes with TurboTax (closed Ut 6
source) on OS X, but it kept crashing at a particular point t u rbOtax

* (Get instructions for attaching the XCode debugger and getting a backtrace

* Using ChatGPT4, | was able to:

* Feed the backtrace to GPT4 to identify the problematic code
 Decompile functions along the way to Objective C / Swift
* |dentify and fix the problem (a missing JSON file in the installation)

* (Il don’t have much experience with OS X or Swift/Objective C reverse engineering)

https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

Crash Source ldentification

The crash occurs on the main thread (thread #1) with the stop reason: “Fatal error:
Unexpectedly found nil while implicitly unwrapping an Optional value'. The
Issue seems to be related to the unwrapping of an optional value without proper checking

for "nil".
The relevant stack trace line is:

“frame #6: 0x0000000107814d1d TurboTax 2020 static
TurboTax_2020.FDPContingencyHandler.readAndReturnExperimentinConfig() ->
Swift.Dictionary<Swift.String, Swift. AnyObject> + 637"

This line is within the
"TurboTax_2020.FDPContingencyHandler.readAndReturnExperimentInConfig()"
function, which returns a dictionary. It appears that the crash is due to an implicitly
unwrapped optional value being *nil" when it was expected to have a value. To resolve this
Issue, it's necessary to find out why the optional value is *nil" and ensure proper handling
of optional values within the code. This can be done by using optional binding (if let or guard

let) or providing a default value with the nil-coalescing operator (??).

Swift Decompilation

It's quite challenging to reconstruct the exact original Swift code from assembly, but | can
provide you with a rough outline of what the code might have looked like. The details and

syntax might be different from the actual code. Here's an attempt to reconstruct the code:

Ej Copy code

1r dictionary: [

et experimentServiceController

et experimentSettings = experimentServiceController.loadExperimentS

let settings = experimentSettings {

ess experimentSettings and populate

n dictionary

Making Binary Systems (More) Transparent

* | don’t actually think LLMs are ready to do all of this on their own
* More reliable, deductive systems are still needed to provide the meat of the analyses

* Lightweight record-replay to keep track of things that are happening

* Control and data flow analyses to understand which components are involved and
identify the code that needs to be examined

 Semantics-preserving decompilation

 But LLMs may provide helpful glue at the input and output portions:

* Turning user queries into a sequence of calls that carry out automated analyses on
binary code

* Digesting the results of reliable analyses into an understandable (but accurate!) answer

Challenges (Research-Oriented)

* Real systems are a complicated mess of different technologies
* Native libraries, JS code, bytecode, |IPC, calls to remote servers

* Even for binary code the “style” of the object code can vary significantly depending on
source language, application domain, etc.

* Performant whole-system record/replay basically doesn’t exist
* Though with some hardware extensions it seems feasible

« How can we make sure the LLM bits faithfully translate what the deterministic/symbolic
components provide?

* Jons of interesting UX and agent design challenges in putting all the pieces together and
making them work on real software

Challenges (non-technical)

 Who will pay for this? Not much of a business model.
* Requires significant device privilege to collect and inspect relevant data
* [rend has been toward taking this away from end users!

* |f it becomes popular, we can expect anti-RE measures to become more
common Iin “regular” binary software

 But maybe not ubiquitous? The web is currently very “inspectable” by
default, but obfuscation is still not the norm

Conclusions

* Reverse engineering has come a long way since | started my PhD in 2008

 We’ve gone from a culture of unreproducible, specialized one-offs to powerful
tools that work on real software and can be built upon

* | am very excited and optimistic about the potential to finally take automated

reverse engineering out of the lab and put it in the hands of people who can
benefit from it most

* A bit sad that | probably won’t be the one doing most of this work!

* But reassured to see a workshop like this carrying on the torch of excellent
research in binary analysis

