
Brendan Dolan-Gavitt

Reverse Engineering in the 2020s
Where are we, and where should we go?

Why Reverse Engineering?

• Long ago (the 2000s), the field of reverse engineering had a slightly
disreputable reputation

• Are you trying to steal someone else’s intellectual property??

• But there are lots of good reasons to reverse engineer!

5HSHDWDEOH 5HYHUVH (QJLQHHULQJ IRU WKH
*UHDWHU *RRG ZLWK 3$1'$

75 &8&6�������

%UHQGDQ 'RODQ�*DYLWW∗� -RVK +RGRVK†� 3DWULFN +XOLQ†� 7LP /HHN†� 5\DQ :KHODQ†

�$XWKRUV OLVWHG DOSKDEHWLFDOO\�

∗&ROXPELD 8QLYHUVLW\
EUHQGDQ#FV�FROXPELD�HGX
†0,7 /LQFROQ /DERUDWRU\

^MRVK�KRGRVK�SDWULFN�KXOLQ�WOHHN�UZKHODQ`#OO�PLW�HGX

$EVWUDFW���:H SUHVHQW 3$1'$� DQ RSHQ�VRXUFH WRRO WKDW KDV
EHHQ SXUSRVH�EXLOW WR VXSSRUW ZKROH V\VWHP UHYHUVH HQJLQHHULQJ�
,W LV EXLOW XSRQ WKH 4(08 ZKROH V\VWHP HPXODWRU� DQG VR DQDO�
\VHV KDYH DFFHVV WR DOO FRGH H[HFXWLQJ LQ WKH JXHVW DQG DOO GDWD�
3$1'$ DGGV WKH DELOLW\ WR UHFRUG DQG UHSOD\ H[HFXWLRQV� HQDEOLQJ
LWHUDWLYH� GHHS� ZKROH V\VWHP DQDO\VHV�)XUWKHU� WKH UHSOD\ ORJ ÀOHV
DUH FRPSDFW DQG VKDUHDEOH� DOORZLQJ IRU UHSHDWDEOH H[SHULPHQWV�
$ QLQH ELOOLRQ LQVWUXFWLRQ ERRW RI)UHH%6'� H�J�� LV UHSUHVHQWHG
E\ RQO\ D IHZ KXQGUHG 0%�)XUWKHU� 3$1'$ OHYHUDJHV 4(08
V
VXSSRUW RI WKLUWHHQ GLIIHUHQW &38 DUFKLWHFWXUHV WR PDNH DQDO\VHV
RI WKRVH GLYHUVH LQVWUXFWLRQ VHWV SRVVLEOH ZLWKLQ WKH //90 ,5� ,Q
WKLV ZD\� 3$1'$ FDQ KDYH D VLQJOH G\QDPLF WDLQW DQDO\VLV� IRU
H[DPSOH� WKDW SUHFLVHO\ VXSSRUWV PDQ\ &38V� 3$1'$ DQDO\VHV
DUH ZULWWHQ LQ D VLPSOH SOXJLQ DUFKLWHFWXUH ZKLFK LQFOXGHV D
PHFKDQLVP WR VKDUH IXQFWLRQDOLW\ EHWZHHQ SOXJLQV� LQFUHDVLQJ
DQDO\VLV FRGH UH�XVH DQG VLPSOLI\LQJ FRPSOH[DQDO\VLV GHYHORS�
PHQW� :H GHPRQVWUDWH 3$1'$
V HIIHFWLYHQHVV YLD D QXPEHU RI
XVH FDVHV� LQFOXGLQJ HQDEOLQJ DQ ROG EXW OHJLWLPDWH YHUVLRQ RI
6WDUFUDIW WR UXQ GHVSLWH D ORVW &' NH\� LQ�GHSWK GLDJQRVLV RI DQ
,QWHUQHW ([SORUHU FUDVK� DQG XQFRYHULQJ WKH FHQVRUVKLS DFWLYLWLHV
DQG PHFKDQLVPV RI D &KLQHVH ,0 FOLHQW�

,� 0RWLYDWLRQ

5HYHUVH (QJLQHHULQJ �5(� LV WKH SURFHVV RI GLVFRYHULQJ
XQGRFXPHQWHG LQWHUQDO SULQFLSOHV RI D SLHFH RI FRGH� :K\
ZRXOG DQ\RQH ZKR LV QRW D FULPLQDO ZDQW WR GR WKDW" :H
FDQ WKLQN RI DW OHDVW WKUHH VRFLDOO\ DFFHSWDEOH XVHV IRU 5(�
�� (QDEOH OHJDF\ FRGH WR FRQWLQXH WR IXQFWLRQ�
�� ,GHQWLI\ FULWLFDO YXOQHUDELOLWLHV�
�� 8QGHUVWDQG WKH WUXH SXUSRVH DQG DFWLRQV RI FRGH�
,W LV FRPPRQ IRU OHJDF\ FRGH WR VWRS ZRUNLQJ DV WKH

VRIWZDUH HFRV\VWHP VXUURXQGLQJ LW HYROYHV� ,Q WKDW HYHQW� DQG
ZKHQ FRUSRUDWH VXSSRUW KDV DOVR ORQJ WHUPLQDWHG� 5(LV WKH
PRVW FRVW�HIIHFWLYH DYHQXH WR FRQWLQXHG XVH� 9LD 5(� WKH
LQSXWV DQG RXWSXWV� WKH GHSHQGHQFLHV DQG UHTXLUHPHQWV FDQ

7KLV ZRUN LV VSRQVRUHG E\ WKH $VVLVWDQW 6HFUHWDU\ RI 'HIHQVH IRU 5HVHDUFK
	 (QJLQHHULQJ XQGHU $LU)RUFH &RQWUDFW �)$��������&������ 2SLQLRQV�
LQWHUSUHWDWLRQV� FRQFOXVLRQV DQG UHFRPPHQGDWLRQV DUH WKRVH RI WKH DXWKRU DQG
DUH QRW QHFHVVDULO\ HQGRUVHG E\ WKH 8QLWHG 6WDWHV *RYHUQPHQW�

EH HQXPHUDWHG LQ GHWDLO� DQG DSSURSULDWH VKLPV IDVKLRQHG WR
EH DEOH WR UXQ WKH ROG FRGH LQ D PRUH PRGHUQ HQYLURQPHQW�
$FFXUDWHO\ LGHQWLI\LQJ YXOQHUDELOLWLHV LV XVXDOO\ LPSRVVLEOH

ZLWKRXW GHWDLOHG 5(NQRZOHGJH� 7KDW LV� \RX PLJKW EH DEOH WR
REVHUYH D VHJPHQWDWLRQ YLRODWLRQ LQGLFDWLQJ DQ RXW�RI�ERXQGV
UHDG RU ZULWH� EXW KRZ GR \RX GHWHUPLQH LI LW LV H[SORLWDEOH
DQG WKHUHIRUH D FULWLFDO YXOQHUDELOLW\" 7KH DQVZHU LV WKDW
\RX QHHG WR GHWHUPLQH ZKDW LV LOOHJDOO\ UHDG RU ZULWWHQ DQG
RIWHQ WKDW GDWD LV SURGXFHG DQG FRQVXPHG E\ FORVHG VRXUFH
SURJUDPV� OLEUDULHV� GULYHUV� DQG NHUQHO� 7KXV� ZLWKRXW HLWKHU
SHUIRUPLQJ 5(RU PDNLQJ XVH RI WKH 5(HIIRUWV RI RWKHUV� LW LV
GLIÀFXOW WR GLVFULPLQDWH EHWZHHQ XQLPSRUWDQW EXJV DQG FULWLFDO
YXOQHUDELOLWLHV�
9HWWLQJ FRGH WR GHWHUPLQH LI LW GRHV ZKDW LW LV SXUSRUWHG WR

GR DQG QRWKLQJ HOVH LV DQ LPSRUWDQW DQG GLIÀFXOW WDVN� 7KLV
LV REYLRXV DQG XQFRQWURYHUVLDO ZKHQ WKH FRGH LV EHOLHYHG WR
EH PDOZDUH� +RZHYHU� ZH EHOLHYH WKDW WKLV LV DQ LQFUHDVLQJO\
ÀQH GLVWLQFWLRQ� &RQVLGHU D SURJUDP ZULWWHQ E\ D OHJLWLPDWH�
ODUJH� 86 FRPSDQ\� ,PDJLQH WKDW WKLV FRGH SHUIRUPV D KRVW
RI PDOLFLRXV DFWLRQV VXFK DV VWHDOLQJ SHUVRQDO LQIRUPDWLRQ
DQG PRGLI\LQJ V\VWHP VHWWLQJV� 1RQH RI WKLV EHKDYLRU LV
LQGLFDWHG LQ WKH GRFXPHQWDWLRQ RU DGYHUWLVLQJ OLWHUDWXUH� QRU
LV LW FOHDUO\ HVVHQWLDO IRU WKH SULPDU\ SXUSRVH RI WKH VRIWZDUH�
+RZ LV WKLV FRGH IXQFWLRQDOO\ GLVWLQFW IURP PDOZDUH" 7KLV LV
QRW VLPSO\ D WKRXJKW H[SHULPHQW��LQ ����� 0DUN 5XVVLQRYLFK
GLVFRYHUHG WKDW 6RQ\ %0* DXGLR &'V ZHUH LQVWDOOLQJ D URRWNLW
RQWR PLOOLRQV RI FRPSXWHUV >��@� 7KH 6RQ\ URRWNLW UHFRUGHG
LQIRUPDWLRQ DERXW XVHUV
 FRPSXWHUV WR VHQG EDFN WR 6RQ\ DQG
KLG HYHU\ ÀOH RQ WKH V\VWHP ZLWK D FHUWDLQ SUHÀ[� ZRUVH� WKHLU
XQLQVWDOOHU DOORZHG DQ\ ZHE SDJH WR GRZQORDG DQG H[HFXWH
DUELWUDU\ FRGH >��@�
,I ZH KDYH WKH WLPH� LQFOLQDWLRQ� RU PLVVLRQ ZH ZLOO ZDQW WR

5(FRGH WR VDWLVI\ RXUVHOYHV WKDW ZKDW LW GRHV LV DFFHSWDEOH WR
XV� ,I ZH ZHUH SKLORVRSKHUV� ZH PLJKW FODLP WKLV DV D EDVLF
ULJKW� ,QVWHDG� ZH PHUHO\ LQGLFDWH WKDW� LQ VRPH VLWXDWLRQV�
LW LV QHFHVVDU\ DQG LPSRUWDQW WR EH DEOH WR GLYLQH WKH WUXH
IXQFWLRQ RI FORVHG SURJUDPV� 7KH RQO\ SUDFWLFDO ZD\ WR GR

Repeatable Reverse
Engineering with
PANDA, 2014

Malware Analysis

Vulnerability Discovery
Software Archaeology

Interoperability

Debugging

Uncovering
Hidden

Behavior

How I Got Here

• Started working on reverse engineering to support Windows memory
forensics

• Expanded into memory analysis for virtualization security (translation:
same thing, but from a hypervisor)

• Built systems for supporting reverse engineering through whole-
system dynamic analyses (PANDA, Malrec)

• Worked on automating reverse engineering for rehosting – emulating
embedded devices

• Side projects on neural decompilation, fuzzing

Reverse Engineering for Memory Forensics

• Basic problem: how do you extract the live state of a system from a memory
dump?

• Answer: by reverse engineering the Windows NT kernel, of course!

• You can get lots of cool stuff from this:

• Lists of running processes, loaded DLLs

• Information about active network connections

• Registry data as it appeared in memory

• …

https://
www.youtube.co
m/watch?
v=c6OMlSoDXrw

https://www.youtube.com/watch?v=c6OMlSoDXrw
https://www.youtube.com/watch?v=c6OMlSoDXrw
https://www.youtube.com/watch?v=c6OMlSoDXrw
https://www.youtube.com/watch?v=c6OMlSoDXrw

Whole-System Dynamic Analysis
Breaking Spotify DRM

• DRM has a strong signature

• High entropy, high randomness (χ2) input

• High entropy, low randomness (χ2) output

• We can look for functions that match this description

• Then just hook their output, and save it!

From: Steal This Movie - Automatically Bypassing DRM Protection in Streaming Media
Services by Wang et al., USENIX Security 2013

Whole-System Dynamic Analysis
Censorship Blacklist Extraction

• LINE is a Japanese-made IM app for
Android with ~560M users worldwide

• Found by CitizenLab to censor some
words for Chinese users

• We wanted to find out which ones

• Very simple strategy: search every
memory read & write to find usage of
strings likely to be in “bad words” list
(法轮 (Falun), 天安门 (Tiananmen))

• Dump everything else passing
through that point

Censorship Blacklist (sample)
198964

FLG
GCD
GFW
18大
38军
八九
半羽
鲍彤
暴政
柴玲
赤匪

共党
共匪
共贼
胡温
江派
江系
江贼
近平
九评
军警
六四
马凯
民运

彭博
天朝
兲朝
屠城
屠杀
团派
退党
汪洋
瘟神
晓波
学潮
学运
余杰

政变
周斌
祖茔
共C档
08宪章
89事件
艾未未
薄瓜瓜
薄熙来
曹建明
曾庆红
陈光诚
大纪元

For translations & context see https://china-chats.net/

https://china-chats.net/

Themes in RE Research Over Time

• Over the past 20 years, academic research in reverse engineering has
undergone some substantial shifts

• x86 software running on desktops -> many architectures, desktop/
embedded/mobile

• Closed tools, hard to reproduce -> open artifacts, good open source tools

• Reverse engineering to support X -> papers studying RE itself regularly in
top conferences

Then: Closed Tools, Poor Reproducibility

• It used to be very common to release papers with no accompanying code

• This made it extremely difficult to build on prior research

• Each group needed to reimplement the history of the field before they could
make any new progress!

• Particularly for areas that require significant amounts of system-building,
this cost quickly exceeds what anyone is willing to do for a single paper.

• I speculate this is one reason why there was so little progress in
decompilation and binary type inference for almost 20 years

Example: Retypd
(Details from Bosamiya et al.’s TRex paper at USENIX Sec 2025)

• Originally presented at PLDI in 2016 by Noonan et al. (GrammaTech)

• In 2021, released open source 🙂

• …well, kind of. Actually, reimplemented by a different GrammaTech
employee after the original author had left.

• They found it very difficult!

https://github.com/GrammaTech/retypd/blob/
f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst

https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst

Now: Open Tools and Artifact Evaluation!

Then: Reverse Engineering for X

• Reverse engineering was most often a supporting discipline

• It was fairly rare to see top conference papers dedicated to RE itself!

• Instead, you would find papers that came up with some cool new technique
for binary analysis, and then applied it the topic du jour:

• Botnets (e.g., automated RE of network protocols)

• Vulnerability discovery (e.g., CGC & binary fuzzing work)

• Debloating This paper is essentially an automated reverse
engineering paper disguised as a debloating
paper.... and I like it.

— Anonymous Reviewer of our IEEE S&P 2022 paper, IRQDebloat

Now: Reverse Engineering on Its Own

• Increased interest in:

• Decompilation: https://mahaloz.re/dec-progress-2024

• Type reconstruction

• Reliable disassembly (and reassembly)

• Fuzzing of binary software

• Automated reverse engineering of embedded devices (rehosting)

https://mahaloz.re/dec-progress-2024

Fulfilling the Potential of RE?

• Reverse engineering has the potential to help return control of software back
to its users

• This is important since software increasingly mediates so much of what we do
every day: how we talk to other people, the devices in our homes, even the
code that runs on cars and trains

• We have seen many examples of how reverse engineering can be used as a
force for good, uncovering bad behavior in software systems

Notable Examples of “RE for Good”
Sony Rootkit (2005)

https://web.archive.org/web/20051102053346/http://www.sysinternals.com/blog/
2005/10/sony-rootkits-and-digital-rights.html

https://web.archive.org/web/20051102053346/http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html
https://web.archive.org/web/20051102053346/http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html

Notable Examples of “RE for Good”
CitizenLab Reverse Engineering of Malware Targeting Activists

https://citizenlab.ca/2016/08/million-dollar-
dissident-iphone-zero-day-nso-group-uae/

https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/
https://citizenlab.ca/2016/08/million-dollar-dissident-iphone-zero-day-nso-group-uae/

“DieselGate” and other “Defeat Devices”
Notable Examples of “RE for Good”

https://media.ccc.de/v/32c3-7331-the_exhaust_emissions_scandal_dieselgate

https://media.ccc.de/v/32c3-7331-the_exhaust_emissions_scandal_dieselgate

“DieselGate” and other “Defeat Devices”
Notable Examples of “RE for Good”

https://cseweb.ucsd.edu/~klevchen/diesel-sp17.pdf

https://cseweb.ucsd.edu/~klevchen/diesel-sp17.pdf

Notable Examples of “RE for Good”
DragonSec RE of Anti-Repair Code in Newag Train Firmware

https://zaufanatrzeciastrona.pl/post/o-trzech-takich-co-zhakowali-prawdziwy-pociag-a-
nawet-30-pociagow/

https://zaufanatrzeciastrona.pl/post/o-trzech-takich-co-zhakowali-prawdziwy-pociag-a-nawet-30-pociagow/
https://zaufanatrzeciastrona.pl/post/o-trzech-takich-co-zhakowali-prawdziwy-pociag-a-nawet-30-pociagow/

But: RE is Not Accessible

• All of the (extremely cool) analyses just discussed required enormous
amounts of work by dedicated specialists

• There is too much software in the world, and too few reverse engineering
experts, for this to scale

• Even most “automated” analyses require significant expertise to use and may
not scale to real software

The Vision

The Vision

The Vision

Will clicking this preserve the text in
the file I had open?

The Vision

What on earth does this mean?

The Vision

What information would be
included in this report, and where will it

be sent?

Early Signs of Life?
Full transcript: https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

• Anecdote: I was doing my taxes with TurboTax (closed 
source) on OS X, but it kept crashing at a particular point

• Using ChatGPT4, I was able to:

• Get instructions for attaching the XCode debugger and getting a backtrace

• Feed the backtrace to GPT4 to identify the problematic code

• Decompile functions along the way to Objective C / Swift

• Identify and fix the problem (a missing JSON file in the installation)

• (I don’t have much experience with OS X or Swift/Objective C reverse engineering)

🪲

https://chat.openai.com/share/b41bcd92-80f8-4aa4-9086-e8aede516ace

Crash Source Identification

Swift Decompilation

Making Binary Systems (More) Transparent

• I don’t actually think LLMs are ready to do all of this on their own

• More reliable, deductive systems are still needed to provide the meat of the analyses

• Lightweight record-replay to keep track of things that are happening

• Control and data flow analyses to understand which components are involved and
identify the code that needs to be examined

• Semantics-preserving decompilation

• But LLMs may provide helpful glue at the input and output portions:

• Turning user queries into a sequence of calls that carry out automated analyses on
binary code

• Digesting the results of reliable analyses into an understandable (but accurate!) answer

Challenges (Research-Oriented)

• Real systems are a complicated mess of different technologies

• Native libraries, JS code, bytecode, IPC, calls to remote servers

• Even for binary code the “style” of the object code can vary significantly depending on
source language, application domain, etc.

• Performant whole-system record/replay basically doesn’t exist

• Though with some hardware extensions it seems feasible

• How can we make sure the LLM bits faithfully translate what the deterministic/symbolic
components provide?

• Tons of interesting UX and agent design challenges in putting all the pieces together and
making them work on real software

Challenges (non-technical)

• Who will pay for this? Not much of a business model.

• Requires significant device privilege to collect and inspect relevant data

• Trend has been toward taking this away from end users!

• If it becomes popular, we can expect anti-RE measures to become more
common in “regular” binary software

• But maybe not ubiquitous? The web is currently very “inspectable” by
default, but obfuscation is still not the norm

Conclusions

• Reverse engineering has come a long way since I started my PhD in 2008

• We’ve gone from a culture of unreproducible, specialized one-offs to powerful
tools that work on real software and can be built upon

• I am very excited and optimistic about the potential to finally take automated
reverse engineering out of the lab and put it in the hands of people who can
benefit from it most

• A bit sad that I probably won’t be the one doing most of this work!

• But reassured to see a workshop like this carrying on the torch of excellent
research in binary analysis

