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Abstract

Code obfuscation is a common technique to impede software analy-
sis on purpose by concealing a program’s structure, logic, or behav-
ior for both benign and malicious purposes. Its widespread adoption
poses a significant challenge to security analysts. While deep learn-
ing has shown promise across various binary analysis tasks, the
learnability and the applicability from obfuscation-applied code
have received less attention to date. Prior work often overlooks
code obfuscation or defers it to future research, as the complexity
of obfuscation may differ significantly depending on the design and
implementation differences across obfuscation tools. In this paper,
we investigate how well obfuscation-applied code can be learned on
a state-of-the-art model for the binary code similarity detection task.
Training the model with obfuscated codes from two source-based
and IR-based obfuscation tools (e.g., Tigress, Obfuscator-LLVM), we
evaluate: i) learnability on obfuscated code, ii) generalizability for
both obfuscated and non-obfuscated code, iii) robustness to known
obfuscation techniques, and iv) adaptability to unknown obfusca-
tion techniques. Our findings show that learning a task directly
from obfuscated code is feasible, outperforming models trained on
large volumes of non-obfuscated code even with a comparatively
small dataset. However, achieving generalizability across obfus-
cated and non-obfuscated code remains challenging. Furthermore,
we find that the model’s robustness and adaptability to previously
(un)known obfuscations is closely tied to the inherent complexity
of an obfuscation technique.
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1 Introduction

Code obfuscation encompasses a wide spectrum of techniques inten-
tionally designed to hinder software analysis or reverse engineering
by obscuring its internal structures, logic, or behaviors. These tech-
niques involve the transformation of boolean and arithmetic expres-
sions, modification of control flow graphs, or the encryption of code
into randomized bytecode intended for execution by a specialized
interpreter. While developers may utilize obfuscation to enhance
software security by thwarting unauthorized inspection, malware
authors can exploit it to evade detection and impede reverse en-
gineering efforts. The pervasive use of obfuscation in malware
significantly burdens security analysts, as it not only increases the
reliance on manual inspection but also challenges the effectiveness
of automated analysis tools. As a result, obfuscated code presents
an ongoing and critical challenge in the field of cybersecurity.

A number of obfuscation tools are readily available, either as
commercial products (e.g., Themida [53], ASPack [54], VMPro-
tect [51]) or as publicly accessible solutions (e.g., UPX [52], Ti-
gress [10], Obfuscator-LLVM [32]). Those accessible tools automate
the process of code obfuscation, enabling users to efficiently pro-
duce obfuscated executables in a handy way. Furthermore, such
code obfuscation tools can be applied at multiple stages of the com-
pilation workflow, including the source code, intermediate repre-
sentation (IR), or binary level, thereby expanding their applicability
across a wide range of contexts.

While the complexity of obfuscation may differ substantially
depending on the design and implementation of a given tool, obfus-
cation techniques can be systematically categorized according to
their underlying conceptual similarities. For instance, instruction
substitution in O-LLVM [10] and encode arithmetic in Tigress [32]
can be classified under the category of mixed Boolean-arithmetic
operations. However, the introduction of randomness, along with
differences in design and implementation, can result in the genera-
tion of infinitely many variations.

Recent advancements in deep learning-assisted binary code anal-
ysis have demonstrated promising results by effectively capturing
high-level code semantics, such as function name recovery [27, 28,
44], binary code similarity detection (BCSD) [1, 22, 26, 58], function
boundary detection [45, 61], decompilation [18, 23, 57], and type
prediction [5, 60, 63]. While a few studies have incorporated obfus-
cated code in their evaluations [12, 46, 47, 56, 61], the majority of
prior work has focused primarily on non-obfuscated code alone.
Given the ambiguous code semantics and complex representations
that are rare in non-obfuscated code, the feasibility and applicability
of learning from obfuscated code remain far from straightforward.
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In this work, we explore the extent to which semantics can be
learned from obfuscation-applied code. We choose one of the state-
of-the-art models [1] for the BCSD task. With two publicly available
obfuscation tools, Tigress [10] that operates at the source level and
Obfuscator-LLVM (O-LLVM) [32] that works at at the IR level, we
generate obfuscated executables. We define the following research
questions: (D) how well the model can be trained on obfuscated code
(learnability); 2 how consistent the model maintains performance
for both obfuscated and non-obfuscated code (generalizability); 3)
how robust the model is on known obfuscation techniques during
training (robustness); and 4 how well the model can be adapted
to unknown (i.e., unseen) obfuscation techniques (adaptability).

Our investigation reveals that while large-scale training on non-
obfuscated code offers some robustness against obfuscation, train-
ing directly on obfuscated code yields comparable or better per-
formance, even with substantially less amount of data. However,
generalizability across both obfuscated and non-obfuscated code
is challenging, due to inherent variations in the design and imple-
mentation of obfuscation tools. Meanwhile, we observe that the
model exhibits reasonable performance on complex obfuscation
techniques such as virtualization. Finally, our findings indicate that
amodel’s robustness and adaptability to both known and unknown
obfuscation techniques are closely connected to the inherent differ-
ences in implementing those techniques.

This paper makes the following contributions:

e We provide insights by systematically investigating the learn-
ability, robustness, and adaptability of deep learning models for
obfuscation-applied code.

o We use O-LLVM [32] and Tigress [10] to generate 4,362 exe-
cutables that apply varying obfuscation techniques, followed by
training BCSD models to support comprehensive evaluation.

o We publicly release our binaries, trained models, and compilation
scripts to facilitate reproducibility for further research!.

2 Background and Related Work

Binary Code Similarity Detection. BCSD models aim to gauge
the similarity between two code snippets. BCSD has a wide range
of real-world applications [21] (e.g., vulnerability detection [19, 39],
malware detection [2, 4], malware family classification [24, 36]).
For example, a malware variant that applies code obfuscation can
be identified via similarity detection models. A similar binary code
snippet refers to binary code originating from the same source code.
The same source code can result in numerous different executable
binaries depending on a specific compilation pipeline. A compi-
lation pipeline can include a compiler (e.g., GCC [17], Clang [48],
MSVC [41]), a target architecture (e.g., ARM, x86-64), an optimiza-
tion level (e.g., 00-3), a target operating system (e.g., Windows,
Linux), and various obfuscation techniques. Since the advent of
the transformer [55] numerous highly performant state-of-the-art
BCSD models emerged. While these models demonstrate robust
performance against non-obfuscated code, their performance on
obfuscated code remains underexplored.

Code Obfuscation. Obfuscation encompasses a set of techniques
designed to hinder software analysis and reverse engineering. An
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adversary may apply obfuscation to various components of a pro-
gram, including executable code, program headers, and string lit-
erals. Such transformations can be applied at different stages of
the compilation pipeline. We specifically examine obfuscation tech-
niques that operate at two stages: one that transforms source code
before compilation(e.g., Tigress [10]), and another that introduces
obfuscation during compilation (O-LLVM [32]). Note that we do
not explore binary-level obfuscation [51-54] as most of these obfus-
cations are a form of packing, which we do not consider (Section 6).

Obfuscator-LLVM. O-LLVM is built on top of the LLVM compiler
infrastructure, which provides a flexible framework for code trans-
formation during compilation. LLVM supports function passes —
modular transformations that can be applied to the intermediate
representation during compilation. O-LLVM implements three core
obfuscation techniques as function passes: control flow flattening,
bogus control flow, and substitution. We discuss these techniques
in more detail in Section 3. Because O-LLVM integrates directly
into the compiler (i.e., Clang), it can be applied with minimal effort
during the build process.

Tigress. Tigress is a source-to-source obfuscation tool that trans-
forms C source code into an obfuscated version before compilation.
While Tigress offers a wide range of obfuscation techniques, in this
work we select five transformations: add opaque, encode branches,
encode arithmetic, flatten, and virtualization. These techniques are
described in detail in Section 3. Unlike O-LLVM, integrating Tigress
into the build process requires additional effort, particularly for
programs with multiple source files. In such cases, source files must
first be merged before obfuscation. We describe the compilation
workflow we use in Section 4.

Previous Approaches. Obfuscated executables are occasionally
employed to evaluate the robustness and generalization capability
of a binary analysis model. FID [56] detects function boundaries
by extracting semantic information from binary code. It is trained
on non-obfuscated code and evaluated on code obfuscated by O-
LLVM to assess robustness against obfuscation. Similarly, XDA [46]
and DeepDi [61] perform function boundary detection and use a
modified O-LLVM [42] for evaluation, with DeepDi additionally
including binaries from Linn and Debray [37]. For binary code
similarity detection, both Asm2Vec [12] and Trex [47] evaluate
model performance using O-LLVM, with Trex employing a modified
O-LLVM. BinFinder [50], a binary function clone detection model,
is trained jointly on binaries obfuscated with both O-LLVM and
Tigress. Except for BinFinder, all other baseline models are trained
exclusively on non-obfuscated code. In contrast to BinFinder’s joint
training strategy, our approach trains a seperate model for each
obfuscation tool. This allows us to evaluate a model’s performance
on (un)known obfuscation techniques during training.

3 Obfuscation Techniques

While O-LLVM and Tigress operate at different stages of the com-
pilation process, their obfuscation techniques can be mainly cate-
gorized into three types of code obfuscation.

Mixed Boolean-Arithmetic. Mixed Boolean-Arithmetic (MBA)
obfuscation [62] transforms arithmetic and logical expressions into
more complex but semantically equivalent forms. MBA disrupts
program analysis techniques such as symbolic execution [34]. Both
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Figure 1: Overview of our experimental pipeline. We construct three BinShot-based models: the original BinShot [1] model as a
baseline, and two models trained on code obfuscated with O-LLVM and Tigress. Then, we evaluate these models based on four
research questions (Section 5): learnability from obfuscated code; generalizability for both non-obfuscated and obfuscated code;
robustness to known obfuscations; and adaptability to unknown obfuscations.

Tigress and O-LLVM implement simplified variants of MBA through
encode arithmetic [7] and instruction substitution [31] transforma-
tions, respectively. While neither tool generates highly intricate
MBA expressions, they systematically replace basic arithmetic and
logical operations with sufficiently complex equivalents. Specifi-
cally, O-LLVM provides four randomly selected alternative transfor-
mations for addition, three for subtraction, and two for each logical
AND, OR, and XOR operations. Although Tigress’s source code is
not publicly available, its documentation for encode arithmetic il-
lustrates four alternate translations for addition, similar to O-LLVM.
A key distinction between the two tools lies in their transforma-
tion strategies: Tigress frequently adopts logical operators, while
O-LLVM prefers inserting randomly generated constants during
transformations.

Control Flow Graph Alteration. The control flow graph (CFG)
represents a function’s execution logic, and obfuscating it re-
duces interpretability. Various techniques can achieve this, with
O-LLVM implementing bogus control flow [29] and control flow
flattening [30], while Tigress offers similar capabilities via the add
opaque [6] and flatten [9] transformations, respectively. For clarity,
we refer to O-LLVM’s control flow flattening and Tigress’s flatten
as “flattening” and O-LLVM’s bogus control flow and Tigress’s add
opaque as “opaque predicate”. Flattening restructures a function
into a loop with a large switch statement. Both O-LLVM and Tigress
support switch statements, but Tigress also includes variants using
goto, indirect jumps, function calls, and concurrent calls (where
each function runs in a separate thread). Opaque predicate relies
on expressions that always evaluate to true or false and inserts
unreachable code. O-LLVM duplicates a basic block, inserts junk in-
structions, and ensures the copy is unreachable. Tigress, in contrast,
provides various types of unreachable blocks, including calls to
random or non-existent functions, buggy or obfuscated versions of
existing code, and random byte sequences. Tigress also implements
encode branches [8], an obfuscation where no equivalent technique
is implemented in O-LLVM. Encode branches obscure the target
of jumps and calls, complicating static analysis. Its default variant,
inspired by Linn and Debray [37], replaces direct branches with
calls to special functions that manipulate the return address.

Virtualization. Virtualization transforms a function into an inter-
preter and encodes the original function body as bytecode. Only
Tigress supports virtualization, using a technique similar to flatten-
ing, where the interpreter is implemented as a switch statement.
Tigress also offers eight additional approaches, including direct
and indirect threading, as well as nested if statements. Recently,

xVMP [59] introduced a virtualization obfuscation extension for
O-LLVM. However, xVMP suffers from several limitations — most
notably, instability when certain compiler options (e.g., optimiza-
tion or debug flags) are enabled. The ability to compile with these
flags is crucial for generating our dataset. Due to these limitations,
we exclude xVMP from our evaluation.

4 Experimental Setup

Overview. Figure 1 depicts the overview of our experimental work-
flow. We train BCSD models on obfuscated code and investigate four
research questions, detailed in Section 5. Our study focuses on two
publicly available obfuscation tools: O-LLVM [32] and Tigress [10],
selected for their distinct integration points in the compilation
pipeline—O-LLVM operates at the IR level, while Tigress targets
source code. Interested readers refer to Appendix A for obfusca-
tion examples. To examine the impact of these tools, we train two
BinShot [1]-based models, BinShot-O-LLVM and BinShot-Tigress,
on code obfuscated with O-LLVM and Tigress, respectively. While
our goal is to evaluate the model’s ability to learn and generalize
across different obfuscation techniques, we are also interested in
its capacity to transfer knowledge across tools that implement sim-
ilar transformations. This motivates our use of BinShot, which is
explicitly designed for transferability in BCSD tasks.

Applying Tigress Obfuscations. Tigress is designed to process a
single C source file at a time, rendering direct application to multi-
source packages difficult, such as coreutils. That is, each binary
is built from multiple source files typically with many dependen-
cies and complex paths, being unable to utilize the description of
compilation (e.g., Makefile). To compile coreutils with Tigress, we
manually merge the necessary source files into a single file for each
binary and provide the appropriate linker flags (e.g., 1selinux for
cp, mkdir, and mv). To address this, we wrote a script that com-
piles coreutils with Tigress across five obfuscation techniques and
four optimization levels. During this process, we encountered an
undeclared identifier error in the dcpgettext_expr function. We
found that Tigress misinterpreted a macro expansion, causing the
declaration and usage of the msg_ctxt_id variable to be separated
into different scopes. We fixed it by including a patching script
that automatically detects and resolves the error. We use GCC for
compilation, as Clang produces machine-specific type errors due to
incompatibilities with Tigress’s custom C Intermediate Language
(CIL) parser. Nonetheless, some binaries (e.g., od, ptx, stat) have
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been failed for compilation when applying obfuscation techniques,
such as virtualization.

Preprocessing and Preparation. We prepare binaries by dis-
assembling them with IDA Pro 8.2 and the Capstone Python li-
brary [3]. To eliminate a bias, we remove redundant functions,
filtering out 168,868 functions in total from executables. We fur-
ther filter out functions with five or fewer instructions, removing
93,731 functions in total. Finally, we split the remaining functions
into training and testing sets with an 8:2 ratio, resulting in 886,615
samples for training and 70,056 samples for testing.

Model Generation. While we largely follow BinShot’s architecture
for our custom models (i.e., BinShot-O-LLVM, BinShot-Tigress), we
introduce two key modifications. First, we replace the pretrained
BERT encoder with RoBERTa [38], increasing the maximum input
length from 256 to 512 tokens. The extended sequence enables
the model to capture a broader context. Second, we adopt byte
pair encoding (BPE) instead of the well-balanced normalization
method [33]. BPE preserves more semantic detail in tokens, helping
the model handle the semantic complexity caused by obfuscation.
Both models are trained in two phases: a pretraining phase, where
the model learns instruction-level semantics, followed by a fine-
tuning phase to adapt the model to the downstream BCSD task. Each
model is pretrained for 15 epochs and fine-tuned for an additional 10
epochs. For training BinShot-O-LLVM, we use binaries obfuscated
with instruction substitution, opaque predicates, flattening, and
the combination of these three techniques. For BinShot-Tigress, we
use binaries obfuscated with encode arithmetic, opaque predicates,
flattening, encode branches, and virtualization. BinShot-O-LLVM
requires approximately 20 minutes for pretraining and 9.3 hours
for fine-tuning, while BinShot-Tigress was pretrained in 5 minutes
and fine-tuned for 2.41 hours. We use the Adam optimizer with a
learning rate of 0.0005, 1 = 0.9, f2 = 0.999, weight decay of 0.01,
€ = le-6, and a warm-up proportion of 0.1. For evaluation, we also
use the original BinShot model released by the authors without any
modifications.

5 Evaluation

We evaluate BinShot [1], BinShot-O-LLVM, and BinShot-Tigress
on our four datasets. All experiments are conducted on a 64-bit
Ubuntu 20.04 system equipped with an AMD EPYC 7763 64-Core
Processor, 512GB of RAM, and two NVIDIA A100 GPU.

Datasets. We generate both obfuscated and non-obfuscated bi-
naries from GNU libraries (e.g., coreutils, binutils), a variety of
open-source projects (e.g., PuTTY, Nginx), and a benchmark suite
(e.g., SPEC2006). Table 1 shows the number of obfuscated bina-
ries generated. Due to the complexity of generating obfuscated
source for multi-source packages with Tigress, we limit its dataset
to coreutils. Binaries are compiled in the ELF format for the x86-64
architecture, with optimizations ranging from 0e to 03. O-LLVM
binaries are compiled using Clang (19.1.4), and Tigress binaries
with GCC (7.2.0). Note that some binaries failed to generate due
to compiler compatibility issues with O-LLVM and unresolved
statements in the CIL representation with Tigress, resulting in un-
known exceptions. For evaluation, we construct four test datasets:
@ Dataset-Clang: 2,500 positive and 2,500 negative pairs of non-
obfuscated functions compiled with Clang; (2) Dataset-GCC: 2,074
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Table 1: We generate 4,362 obfuscated-applied executables
using O-LLVM and Tigress, compiled with Clang and GCC,
respectively. For training and evaluation, we also compile
604 non-obfuscated binaries with Clang and 408 with GCC.

| O-LLVM Tigress
Package Version ‘ #Binaries  #Functions | #Binaries #Functions
binutils [15] 2.27 150 218,135 - -
coreutils [14] 8.2 1,648 131,142 2,020 59,088
diffutils [16] 3.2 64 6,353 - -
gzip [20] 1.8 16 1,685 - -
lighttpd [35] 1.4.43 16 5,897 - -
lvm2 [40] 2.02.168 32 37,295 - -
Nginx [43] 1.8.1 16 17,908 - -
PuTTy [49] 0.66 112 90,682 - -
vsftpd [13] 3.03 16 6,953 - -
miniweb [25] - 16 1,081 - -
SPEC2006 [11] - 256 167,559 - -
Total 2,342 684,690 2,020 59,088
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Figure 2: Performance comparison between BinShot [1] (gray)
and BinShot-O-LLVM (black) for O-LLVM-obfuscated code.
After training on O-LLVM-obfuscated code, BinShot-O-LLVM
achieves higher performance on obfuscated code compared
to BinShot, despite trained on a smaller dataset (RQ1).

positive and 2,074 negative pairs of non-obfuscated functions com-
piled with GCC; (3 Dataset-O-LLVM: 4,000 positive and 4,000
negative pairs of O-LLVM-obfuscated and non-obfuscated func-
tions; and (3 Dataset-Tigress: 5,000 positive and 5,000 negative
pairs of Tigress-obfuscated and non-obfuscated functions.
Research Questions. We define the following four research ques-
tions to investigate the learnability, robustness, and adaptability of
a state-of-the-art BCSD model for obfuscation-applied code.

e RQ1: How well can the deep learning model be trained from
obfuscated code (Section 5.1)?

e RQ2: How well can the model be generalizable for both obfus-
cated and non-obfuscated code (Section 5.2)?

e RQ3: How robust is the model on known obfuscation techniques
(Section 5.3)?

e RQ4: How well the model be adapted to unknown obfuscation
techniques (Section 5.4)?

5.1 Learnability from Obfuscated Code

This section evaluates the learnability of obfuscated code by com-
paring the performance of BinShot that has not seen obfuscated
code and our own models trained with obfuscated code. Specifically,
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Figure 3: Performance comparison between BinShot [1] (gray)
and BinShot-Tigress (black) for Tigress-obfuscated code. Af-
ter training on Tigress-obfuscated code, BinShot-Tigress
achieves comparable performance on obfuscated code com-
pared to BinShot, despite trained on a smaller dataset (RQ1).
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Figure 4: Performance of BinShot-O-LLVM on non-
obfuscated (left) and obfuscated code (right). After training
on obfuscated code, BinShot-O-LLVM retains similar
performance on regardless of obfuscation (RQ2).

we evaluate BinShot and BinShot-O-LLVM on Dataset-O-LLVM,
and BinShot and BinShot-Tigress on Dataset-Tigress.

Results. Figure 2 and Figure 3 present how well BinShot-O-LLVM
and BinShot-Tigress can learn from obfuscation-applied code. We
compare the performance of each model against the original Bin-
Shot [1] model. BinShot-O-LLVM exhibits better performance com-
pared to BinShot (Figure 2) while BinShot-Tigress demonstrates
comparable results to the original (Figure 3). We hypothesize that
the performance gap may arise from a relatively small dataset
when training models with obfuscated code: recall that BinShot was
trained on 15 distinct software packages, whereas BinShot-O-LLVM
and BinShot-Tigress on only 11 and 1 package(s), respectively.

Takeaway #1 Deep learning-based models are learnable to
some extent by training directly on obfuscated code, achieving
performance improvement on obfuscated samples, even with
a relatively small training dataset.

5.2 Model Generalizability

We evaluate the generalization capability of BinShot-O-LLVM
and BinShot-Tigress on both non-obfuscated and obfuscated code.
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Figure 5: Performance of BinShot-Tigress on non-obfuscated
(left) and obfuscated code (right). Interestingly, unlike
BinShot-O-LLVM, we observe discrepancies in performance
between non-obfuscated and obfuscated code: i.e., the BCSD
performance on non-obfuscated code is significantly better.
We hypothesize that relatively small training data for the
BinShot-Tigress model constraints its performance (RQ2).

BinShot-O-LLVM is evaluated on Dataset-Clang and Dataset-O-
LLVM, while BinShot-Tigress is evaluated on Dataset-GCC and
Dataset-Tigress.

Results. Figure 4 and Figure 5 illustrate the generalizability of
BinShot-O-LLVM and BinShot-Tigress across (non-)obfuscated
code. BinShot-O-LLVM achieves comparable performance on
both Dataset-Clang and Dataset-O-LLVM, indicating that it per-
forms well on both obfuscated and non-obfuscated code. How-
ever, BinShot-Tigress performs better on Dataset-GCC compared
to Dataset-Tigress, demonstrating high performance on non-
obfuscated code alone. The results suggest that persistent model
behaviors may vary between obfuscated and non-obfuscated code,
depending on the design and implementation of a given obfuscation
tool. We hypothesize that this discrepancy may partially stem from
the limited training corpus of BinShot-Tigress.

Takeaway #2 Achieving generalizability in deep learning
models remains challenging, even when trained on obfuscated
code. This limitation arises from inherent complexities caused
by variations in the design and implementation of obfuscation
tools.

5.3 Robustness to Known Obfuscations

We evaluate the performance of BinShot-O-LLVM and BinShot-
Tigress on individual obfuscation techniques they encountered dur-
ing training. To ensure a balanced comparison, Dataset-O-LLVM
and Dataset-Tigress are organized such that each obfuscation tech-
nique contributes an equal number of function pairs. BinShot-O-
LLVM is evaluated on Dataset-O-LLVM and BinShot-Tigress on
Dataset-Tigress.

Results. Table 2 (white background) presents the performance
of BinShot-O-LLVM and BinShot-Tigress on known obfuscation
techniques encountered during training. While both models per-
form well on these techniques, we observe a notable discrepancy
in instruction substitution and encode arithmetic. Although both
techniques are forms of MBA, BinShot-Tigress performs relatively



SURE ’25, October 13-17, 2025, Taipei, Taiwan

Jiyong Uhm, Yujeong Kwon, and Hyungjoon Koo

Table 2: Performance of BinShot-O-LLVM and BinShot-Tigress on obfuscation techniques encountered during training. Obfus-
cation techniques are categorized as mixed boolean-arithmetic (MBA), control flow graph alteration, and others. A, P, R, F1,
and AUC denote accuracy, precision, recall, harmonic mean of precision and recall, and area under the curve, respectively.
Both models demonstrate decent performance on known obfuscation techniques (white background; RQ3). For unknown

obfuscation techniques (gray background; RQ4), BinShot-Tigress shows better adaptability compared to BinShot-O-LLVM.

Mixed Boolean-Arithmetic Control Flow Graph Alteration Other

Type A P R F1  AUC Type A P R F1  AUC Type A P R F1  AUC

BinShot-O-LLVM  Substitution 0.960 0.997 0.922 0.958 0.960 Flattening 0.932  0.998 0.866 0.927 0.932 Combined 0.920 0995 0.845 0.914 0.920
OpaquePredicate  0.948 0.997 0.899 0.945 0.948

BinShot-Tigress EncodeArithmetic ~ 0.871 0.988 0.752 0.854 0.871 Flattening 0.884 0.986 0.780 0.871 0.884 Virtualization 0.876 0.989 0.760 0.859 0.876
OpaquePredicate  0.878 0.990 0.764 0.862 0.878
EncodeBranch 0.880 0.987 0.771 0.865 0.880

BinShot-O-LLVM  EncodeArithmetic  0.589 0.994 0.180 0.304 0.589 Flattening 0.606 1.000 0.212 0.349 0.606 Virtualization 0.599 0.980 0.203 0.336 0.599
OpaquePredicate  0.604 0.995 0.210 0.346  0.604
EncodeBranch 0.595 1.000 0.190 0.319 0.595

BinShot-Tigress Substitution 0.695 0.891 0.445 0.593 0.695 Flattening 0.636 0.816 0.352 0.492 0.636 Combined 0.582 0.747 0.248 0.372 0.582
OpaquePredicate  0.595 0.787 0.260 0.391  0.595

worse on encode arithmetic compared to BinShot-O-LLVM on in-
struction substitution. This may be attributed to differences in im-
plementation: instruction substitution frequently employs random
constants, whereas encode arithmetic relies more heavily on logical
operators. These results suggest that the specific implementation
details of an obfuscation technique can influence its learnability.

Takeaway #3 Deep learning-based models trained with ob-
fuscated code demonstrate a decent performance for known
obfuscation techniques. However, the specific implementa-
tion of an obfuscation technique can substantially affect this
performance.

5.4 Adaptability to Unknown Obfuscations

We evaluate the adaptability of BinShot-O-LLVM and BinShot-
Tigress on unknown obfuscation techniques during training. We
achieve this by testing BinShot-O-LLVM on Dataset-Tigress and
Tigress on Dataset-O-LLVM. In essence, each model is evaluated
on code generated by a different obfuscation tool.

Results. Table 2 (gray background) presents the performance of
BinShot-O-LLVM and BinShot-Tigress on unknown obfuscation
techniques. While both models maintain high precision, we observe
a notable drop in other metrics across the board. For BinShot-O-
LLVM, the lowest F1 score of 0.304 is recorded for encode arithmetic,
despite this technique being conceptually similar to instruction
substitution. However, BinShot-Tigress exhibits the lowest perfor-
mance (F1: 0.372) in combined obfuscation, which is an unknown
obfuscation technique for this model. Despite BinShot-O-LLVM
being trained on a larger dataset, BinShot-Tigress achieves a better
overall performance on unknown obfuscations. This observation
suggests that the implementation of an obfuscation tool impacts the
robustness of a model on unknown obfuscation techniques. Overall,
both models struggle to handle unknown obfuscation techniques,
even when they are similar to those used during training.

Takeaway #4 The model’s ability to adapt to previously un-
known obfuscation during training is closely tied to the com-
plexity of the obfuscation techniques it has encountered.

6 Discussion and Limitations

Effect of Obfuscation Techniques on Model Performance.
In general, we observe that incorporating obfuscated code dur-
ing training improves model performance on obfuscated inputs.
We also find that training on a large non-obfuscated dataset can
provide a degree of robustness against obfuscation. Despite this,
models trained specifically on obfuscated code achieve better or
comparable results while requiring a significantly smaller dataset.
However, generalization to unknown obfuscation techniques yield
mixed results. BinShot-Tigress outperforms BinShot-O-LLVM de-
spite being trained on a smaller dataset, which may be attributed
to differences in how Tigress and O-LLVM implements obfuscation
techniques. We further observe implementation-specific effects in
the case of MBA. O-LLVM incorporates random constants, while Ti-
gress relies more heavily on logical operators. We observe that both
models struggled more with Tigress’s implementation, suggesting
that the specific implementation of an obfuscation technique can
substantially influence model performance.

Limited Obfuscation Tools. We do not consider binary-level ob-
fuscation tools such as Themida [53], ASPack [54], VMProtect [51],
and UPX [52]. These tools perform packing, an obfuscation tech-
nique that conceals executable code by encrypting it and only re-
vealing it at runtime. Packing and other advanced obfuscation tech-
niques that apply encryption to executable code are beyond the
scope of our work.

Scope and Variability Constraints in Obfuscation Experi-
ments. We do not explore the extended configuration options
provided by O-LLVM and Tigress. Both tools offer parameters to
control the frequency and complexity of their obfuscation tech-
niques. However, for brevity, we restrict our experiments to the
default setting of each obfuscation technique. The obfuscation tech-
niques used in our paper inherently introduce variability—repeated
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runs with the same configuration can yield different binaries. How-
ever, in our experiments, we generate each obfuscated binary only
once and do not investigate the effect of this variance. We leave a
deeper analysis of the variability of obfuscation to future work.

Imbalanced Dataset. Our experiments with Tigress limits scala-
bility (compared to O-LLVM) due to dataset generation constraints.
We leave expanding the dataset as part of future work, which in-
cludes a broader range of programs can provide deeper insight into
the impact of obfuscation on deep learning models.

Future Work. Commercial tools such as VMProtect and Themida
employ sophisticated virtualization-based obfuscation techniques,
which we investigate as part of our future work. Besides, inter-
preting undesirable model behavior (e.g., false positives and false
negatives) through explainable Al techniques is essential for devel-
oping robust models.

7 Conclusion

Despite the wide adoption of code obfuscation, its applicability
and learnability in deep learning models have received less atten-
tion. In this paper, we examine how well a state-of-the-art BCSD
model can learn and perform on obfuscated code. Our findings show
that training directly on obfuscated code is not only feasible but
also outperforms models trained on much larger datasets of non-
obfuscated code. However, generalizability across obfuscated and
non-obfuscated code is challenging to achieve. Finally, we observe
the model’s robustness and adaptability to some extent depending
on the complexity of an obfuscation technique.
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A Obfuscated Code Examples P

The following code examples illustrate the Mixed Boolean-
Arithmetic (MBA) obfuscation technique in practice. The
dot_or_dotdot, with Tigress, function’s original conditional opera-
tion at line 2 in Listing 1 has been transformed into the obfuscated
(source) code at lines 4-8 in Listing 2. With O-LLVM, the add func-
tion’s original addition operation at line 9 in Listing 3 has been
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