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Abstract
Decompilation is the process of translating low-level, machine-
executable code back into a high-level representation. Decompilers–
tools that perform this translation–are essential for reverse engi-
neers and security professionals, supporting critical tasks within
their workflows. However, due to the inherent loss of informa-
tion during compilation as a result of optimizations, inlining, and
other compiler-specific transformations, decompiled output is often
incomplete or inaccurate.

A central challenge in decompilation is accurate type inference:
the reconstruction of high-level type information for variables
based on low-level code patterns and memory access behaviors.
Despite ongoing advancements in decompilation research, there
is a notable lack of comprehensive comparative studies evaluating
the type inference capabilities of existing decompilers.

This paper presents a benchmark study of five decompilers, focus-
ing on their ability to infer types at both the function and variable
levels. We conduct the evaluation on a dataset of binaries com-
piled from the Nixpkgs collection at both -O0 and -O2 optimization
levels, allowing us to assess decompiler performance across unopti-
mized and optimized executables. The results highlight the relative
strengths and weaknesses of each decompiler and identify recurring
scenarios in which incorrect type information is produced.
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1 Introduction
Binary decompilers, or decompilers for short, are the software that
translate compiled executables (“binaries”) into high-level human-
readable pseudocode. Decompilers rely only on the information
present in a binary to generate the pseudocode. Because compila-
tion is itself a lossy process, the code that decompilers reconstruct is
often incorrect or incomplete. A critical step of this reconstruction
is binary type inference, i.e. determining the type of a variable or a
function that was compiled into a binary. Binary type inference (or
type inference for short) is crucial for interpreting memory layouts,
pointer relationships, and calling conventions. Because type infer-
ence is a critical part of binary decompilation, and that decompiled
programs are frequently used for vulnerability research, issues in
the type inference process can have real-world impact, resulting in
missed bugs and vulnerabilities during static analysis [18].

Although there have been considerable advances in the field of
type inference through static, dynamic, and learning-based tech-
niques [1, 3, 7, 15, 16, 20, 21, 23, 24, 30, 31], the community still lacks
a systematic understanding—and, more importantly, a rigorous and
comprehensive evaluation—of existing type inference algorithms
and their implementations. This is caused by the following reasons.
First, as pointed out by prior work [3], many published techniques
do not make their prototypes publicly available, let alone release
their source code, making it difficult to reproduce results or com-
pare across approaches. Second, there is no standard benchmark
dataset of binaries with ground-truth type information for evaluat-
ing type inference capabilities. As a result, existing studies often
construct and evaluate their techniques on custom datasets, which
may introduce limitations in evaluation or even biases in the results.
Last but not least, most studies report the strengths of individual al-
gorithms and tools under specific subcategories of types. However,
such subcategories may not be representative in practice, and thus
these strengths may not contribute as much as expected benefit
to the real-world use case of binary analysis and software under-
standing, for example, binary code decompilation. For example,
Retypd reports 98% accuracy in recovering const qualifiers, but
this metric reveals little about its overall type-inference capability,
because distinguishing const from non-const types rarely matters
for real-world binary reverse engineering. It is essential to conduct
a comprehensive evaluation of decompilers’ type-inference capa-
bilities for the community to understand the state of the art and
promote more rigorous advancement.

This paper aims to benchmark the type inference capabilities of
the decompilation tools used in practice. Specifically, we evaluate
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four widely used decompilers: Hex-Rays [13], Binary Ninja [27],
Ghidra [19], and angr [22]. Beyond the native type inference ca-
pabilities that these decompilers implement, we also benchmark
Retypd [20], which provides a Ghidra plugin that implements the
algorithm [12]. Our study targets x86-64 ELF binaries compiled
from C, because most decompilers prioritize these binaries when
developing new features. We compile every program at -O0 and
-O2 to get wider understanding of the type inference capabilities of
decompilers across optimization levels.

Guided by these choices, we build a standard dataset of pro-
grams compiled from the NixOS package set, Nixpkgs. Each binary
is first built with full debug information, from which we extract
ground-truth variables and types. We then strip the binaries, apply
each testing decompiler to decompile the binaries, normalize the
outputs, and finally collect the types inferred by each decompiler.
We measure the following four metrics:

• Coverage: Percentage of the ground-truth variables success-
fully recovered by the testing decompiler,

• Accuracy: Percentage of ground-truth variables with cor-
rectly recovered type,

• Precision: Percentage of decompiler-identified variables that
exist in ground truth and have a correct type, and

• False Positive Rate: Percentage of variables identified by the
decompiler that are not present in the ground truth.

We also divide the evaluation on various dimensions to identify
specific cases where decompilers struggle. In particular, we find
that the presence of complex types, that is, structures and arrays,
makes certain decompilation tasks easier and others harder.

Contributions. This paper makes the following contributions.
• We create a comprehensive benchmark suite for evaluating
the performance of binary type inference techniques as im-
plemented in binary decompilers. Researchers can extend
this benchmark suite to support more decompilers in the
future.

• We evaluate five binary type inference algorithms and de-
compilers using our benchmark suite and report our findings.

• We quantify through our survey that decompilers have much
room for improvement when compared to a ground truth of
source-accuracy.

In the spirit of open science, we make our research artifacts, includ-
ing evaluation scripts and raw data available at https://github.com/
sefcom/decompiler-types-benchmark.

2 Background
Before delving into the details of benchmarking, we first introduce
the key concepts that are essential for understanding this paper.

2.1 Compilation and Decompilation
Compiling the source code to a binary is a multi-step process as
shown in Figure 1.

• Pre-processing removes comments, resolves macros and
expands included files.

• Compilation and Assembly parses the pre-processed code
and converts it to an intermediate representation. This in-
termediate representation is then optimized for size, speed,

and other metrics, and then converted to platform specific
assembly code. This assembly is then converted to binary
machine code by the assembler.

• Linking resolves all external references and links all func-
tion calls to their respective definitions.

A decompiler attempts to reverse this process and generate source
code, usually a close imitation of C syntax, from the compiled binary.
This is also a multi-stage process as shown in Figure 2.

• Disassembly and IR Lifting disassembles the executable
to assembly code and converts the instructions to an Interme-
diate Representation (IR) which is used for further analysis.

• Program Recovery processes the lifted IR to generate func-
tion boundaries, reconstruct control flow graph and recover
variables and types using static analysis and inference tech-
niques. In addition, some decompilers also optimize the code
for readability, for example, by removing dead logic and
unnecessary assignments.

• Code generation converts the processed IR to C-like source
code.

2.2 Debug Information
Debugging With Attributed Record Format (DWARF) is the standard
debugging information format embedded in ELF binaries compiled
with debug symbols. It stores the source code details for functions,
variables, and types through a hierarchy of Debugging Information
Entries (DIEs). Each DIE captures various attributes such as the
name, size, and storage location as well as the underlying type
definition, including arrays and structures [9].

2.3 Binary Type Inference
While type inference on source code is a well-studied problem, it
becomes significantly more challenging when applied to binaries.
The challenge of binary type inference has been widely explored.
Existing research primarily focuses on using static and dynamic
analysis techniques and machine learning approaches infer types
from binaries.

2.3.1 Static Analysis Approaches. Static type inference techniques
aim to recover high-level type information solely from a program’s
binary or intermediate representation (IR) without executing the
code. TIE [15] infers variable types by generating constraints from
data flows and function calls and solving them using a custom
solver. DIVINE [1] employs Value-Set Analysis to group memory
accesses into variable-like locations and iteratively refines these
groupings to identify aggregate structures, focusing on recovering
variables rather than performing full type inference. Osprey [30]
uses a probabilistic approach by assigning likelihood scores to possi-
ble types in order to determine the most probable type assignments.
Retypd [20] and BinSub [24] both generate type constraints and
solve them to infer types for variables. Unlike all prior techniques
that are based on unification, Retypd and BinSub relies on sub-
typing, which allows them to handle polymorphic types in binary
code.
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Figure 1: The compilation process for a C program.

Figure 2: The decompilation process for a compiled binary.

2.3.2 Dynamic Analysis Approaches. Dynamic type inference ap-
proaches use programs’ runtime information such as memory lay-
outs and access patterns to determine the types of variables. RE-
WARDS [16] instruments program execution to tag memory access
with a timestamped type attribute and propagates resolved type
information based on the tags. Howard [23] captures memory snap-
shots during execution and matches them to type templates, effec-
tively recovering array or struct types. DSIbin [21] extends Howard
by combining it with DSI [28], a data-structure identification tool,
to improve the detection of complex types.

2.3.3 Learning-based Approaches. Learning-based type inference
approaches leverage statistical models and learning based algo-
rithms to recover types from binaries. EKLAVYA [7] trains a RNN
(recurrent neural network) to recover function types. CATI [6] an-
alyzes a contextual window of instructions around each variable,
using a multi-stage neural classifier to predict its type. TyGr [31]
uses a graph neural network (GNN) to encode data flow information
and recover both basic and struct types. TypeFSL [25] applies few-
shot learning with interprocedural slicing to generalize from just
a handful of labeled examples. ReSym [29] fine-tunes pre-trained
Large Language Models (LLMs) to produce types and names from
decompiler IR and improves their outputs with logic programming.

2.3.4 Type Inference Techniques Used in Decompilers. Given the
fact that decompilers must statically decompile binary functions,
they typically use static type inference techniques. We examine the
type inference techniques that popular open-source decompilers
use and present them below. Ghidra conducts a unification-based
type propagation and inference. Ghidra-Retypd implements the
original retypd algorithm. angr implements and improves retypd
for decompiled code. Unfortunately, it is impossible to determine
the exact type inference algorithms that close-source decompilers,
like Hex-Rays and Binary Ninja, use.

3 Overview
Our benchmark procedure includes the following key steps:

• Dataset Creation (Section 3.1). We build a dataset of C
binaries, which serves as the basis for our evaluation.

• GroundTruthGeneration (Section 3.2).We create a ground
truth database of variable types from C-language binaries
with debug information.

• Data Extraction (Section 3.3). We decompile all binaries
in the dataset and extract variable and type information for
each decompiled function.

• Data Normalization (Section 3.4). We normalize the ex-
tracted type information to ensure consistency across differ-
ent decompilers.

3.1 Dataset Creation
For generating the ground truth database, we select 170 C-language
binaries compiled from the 25.05 release of Nixpkgs. Nixpkgs was
chosen as a dataset due to its highly reproducible and instrumentable
nature, allowing us to customize the builds very precisely and eas-
ily while being assured that the compilation can be verified. Since
Nixpkgs does not provide package categorizations, we picked by
hand several packages based on the following criteria:

(1) Presence in the Gentoo Linux dev-util packageset was
preferred due to this packageset being used as an evaluation
dataset in prior work [31].

(2) Packages must have been written in C and produce binaries,
as opposed to only libraries.

(3) Packages should compile under our instrumentation.
We built all the selected packages with debug information at both
-O0 and -O2 optimization levels to account for an unoptimized
baseline and a more real-world optimization scenario. We also used
the -fno-omit-frame-pointer flag during the compilation of -O2
binaries to preserve frame pointers.
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From this point, all ELF executables which were under 800 KB
were chosen. We found it necessary to discard files over 800 KB be-
cause some decompilers and binary type inference techniques, such
as Retypd and angr, would require too much time when processing
or decompiling binaries that are too large.

Preserving frame pointers in -O2 optimization. Our study uses
stack offsets to identify variables (and their locations). In our exper-
iments, we found that when binaries were compiled at -O2, base
pointers were often optimized away, which makes it difficult to
accurately track variable locations in terms of their stack offsets. To
mitigate this issue, we employed the -fno-omit-frame-pointer
flag when compiling binaries under -O2 optimization, which pre-
serves base pointers and allowed us to accurately and unambigu-
ously match variables across ground-truth and decompiler outputs.

3.2 Ground Truth Generation
Current research [2] suggests that faithfulness to original source
code is a useful metric for evaluating decompiler quality. Following
this suggestion to its logical conclusion, we believe that faithfulness
to DWARF debugging information corresponding to source-original
variables is a good measure of variable recovery and type inference
quality.

We additionally define the notion of a variable to evaluate as
uniquely identified by an offset within a function’s stack frame.
This explicitly excludes register- and statically-allocated variables,
while variables which share a stack offset at different points in
a function into the same definition. We chose to exclude register-
allocated variables and collapse stack variables by stack frame offset
in order to simplify implementations of this benchmark, as there is
not a widely available or agreed upon factor which can be used to
disambiguate two such overlapping variables. We chose to exclude
statically allocated variables because they cannot be associated
with a function for our comparisons between different types of
functions.

We offer the following motivating examples in support of these
decisions:

(1) Saved registers are not useful for a reverse engineer to view
in order to comprehend the intended semantics of a function,
and they will not be given a DWARF entry.

(2) Variables which are assigned but not used will only be given
a DWARF entry if the corresponding memory store actually
makes it into the binary.

(3) Two variables which re-use the same compiler stack location
will be given two DWARF entries. However, our method-
ology will collapse these variables into one, on both the
ground-truth and decompiled sides.

In accordance with this philosophy, we generate our ground truth
database by parsing DWARF debugging information within ELF
binaries. We extract the type information by traversing DIEs, iden-
tifying function entries, and marshalling associated variable data
into a JSON file (Figure 3). Each variable is described by a vari-
able entry in the ground truth database. A variable entry contains
variable name, stack frame offset, type information, and size, as
well as several Boolean values indicating whether the variable is
a pointer, array, struct, union, enum or typedef. We then conduct

a type normalization routine on all extracted type information to
enable cross-decompiler comparison.

The extraction script also implements handling for few complex
types:

• Arrays have three additional fields for its length, element
type, and element size (indicating base type size).

• Typedef declarations have an array containing the com-
plete typedef chain, to allow quick comparison between
semantically equivalent types with different representations.

Figure 3: Ground truth type data extraction.

3.3 Data Extraction
We begin the evaluation for each decompiler by decompiling and
dumping each of the stripped binaries using decompiler APIs (Fig-
ure 4). As there is no standalone tool for Retypd, the inferred types
are extracted using the ghidra-retypd Ghidra plugin [12].

Figure 4: Decompilation and type data extraction.

3.4 Type Normalization
Extracted type annotations from various decompilers and from
DWARF-based ground truth often differ in naming conventions,
qualifiers, and syntax. To allow for a fair comparison, we apply the
following normalization procedure to transform all variants of a
type into a standard form:

• Remove C qualifiers such as const, struct, volatile, signed,
and unsigned.

• Map synonyms, or common decompiler-specific types, to
standard C types. Table 1 and Table 2 show motivating ex-
amples.

4 Evaluation Metrics
We establish a set of metrics to evaluate the performance of de-
compilers in binary type inference. Because variable information
is elided in binaries, decompilers must first reason about the loca-
tions of variables before inferring their types. Decompilers cannot
infer the type of a variable if they fail to recognize it in the first
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Table 1: 64-bit integer type normalization.

Decompiler Type
Hex-Rays _QWORD

Ghidra & Retypd undefined8
Binary Ninja uint64_t

=⇒ Long Long

Table 2: 32-bit integer type normalization.

Decompiler Type
Hex-Rays _DWORD

Ghidra & Retypd undefined4
Binary Ninja int32_t

=⇒ Int

place. As such, we must measure the performance of both variable
recognition (Section 4.1) and variable type inference (Section 4.2).

4.1 Variables
First, wemeasure the presence and absence of variables with respect
to the ground truth. We establish four metrics: Accuracy, Precision,
False Positive Rate (FPR), and Coverage.

Coverage assesses the comprehensiveness of the decompiler by
measuring howmany variables from the ground truth it successfully
identifies, regardless of type correctness. It measures the complete-
ness of the type inference process.

Coverage =
| Vargt ∩Vardec |

| Vargt |
where Vargt is the set of variables in the ground truth and Vardec
is the set of variables identified by a decompiler.
Accuracy measures the proportion of variables correctly identified
and typed by the decompiler relative to the total number of variables
present in the ground truth. It provides insight into the overall
correctness of type inference.

Accuracy =
| Varcorr |
| Vargt |

where Varcorr is the set of variables that are both correctly recog-
nized and correctly typed by a decompiler.
Precision evaluates how reliable the decompiler’s output is by
measuring the fraction of correctly identified and typed variables
against all variables reported by the decompiler. A higher precision
indicates fewer incorrect predictions.

Precision =
| Varcorr |
| Vardec |

False Positive Rate (FPR) quantifies the rate at which a decom-
piler incorrectly identifies variables that do not exist in the ground
truth. It measures the tendency of the tool to produce erroneous
outputs.

FPR =
| Vardec −Vargt |

| Vardec |
where Vardec −Vargt is the set of variables that are identified by
the decompiler but do not exist in the ground truth.

Together, these metrics provide a balanced evaluation framework,
highlighting reliability (Accuracy and Precision) while also address-
ing completeness (Coverage) and propensity for errors (False Posi-
tive Rate).

4.2 Variable Types
For variables whose storage locations match between the ground
truth and the decompiler output, we conduct a detailed comparison
between the corresponding types. We break the notion of binary
type inference performance into several distinct metrics, different
for each variety of type:

Primitive Types. We define two metrics: type inference accuracy,
which measures the correct identification of the specific type, and
size inference accuracy, evaluating the correctness of the identified
size.

Pointers.We calculate the accuracy of pointer identification and
correctness of the identified pointer targets. Additionally, a size
inference accuracy metric is computed, similar to primitive types.

Structures. We calculate a single metric which indicates whether
each struct was identified correctly. This focuses on how effectively
the decompiler recognizes structure variables from variable uses
across different functions.

Arrays. We establish two metrics for arrays. One is accuracy of
complete identification, where both the base type and array length
are correctly inferred. The other is accuracy of identifying arrays
with the correct base element type but wrong length.

This comprehensive type-level evaluation provides deeper insights
into specific type handling capabilities of the decompilers, high-
lighting their effectiveness across diverse variable types.

5 Evaluation
We conduct two experiments. The first one is a general analysis of
binary type inference, where we evaluate the quality of binary type
inference in decompilers. The second experiment is type-specific
analysis, where we use the previously described metrics to score
each decompiler on its treatment of individual types.

As noted in Section 3.1, some tools timed out when processing
larger or more complex binaries. Although we imposed a size re-
striction to mitigate this issue, a few binaries still caused timeouts.
Consequently, our final evaluation includes only the binaries suc-
cessfully processed by all tools, resulting in 94 binaries for -O0 and
106 binaries for -O2.

5.1 Evaluated Decompilers
Because of the constraints of our large-scale experiment, we chose
the decompilers to evaluate for their scriptable APIs. We identified
five decompilers which we could harness to produce variable re-
covery and type inference information. This collection represents
a realistic sample of the state of the art of decompilation.

(1) Hex-Rays Decompiler is a commercial product, part of the
IDA Pro interactive disassembler. We used version 9.0.

(2) Binary Ninja is a commercial product developed by Vector
35. We used version 5.1.
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Table 3: Variable location evaluation for all variables.

Decompilers Vardec | Vardec − Vargt | | Vargt − Vardec |
-O0 (Vargt = 28,564)

angr 23,032 7,590 13,122
Binary Ninja 14,139 5,208 19,633
Ghidra 15,159 6,345 19,750
Hex-Rays 18,926 3,978 13,616
Retypd 28,461 18,638 18,741

-O2 (Vargt = 3,492)

angr 11,371 8,691 812
Binary Ninja 8,036 5,892 1,348
Ghidra 8,728 6,644 1,408
Hex-Rays 7,948 4,875 419
Retypd 57,944 56,261 1,809

(3) Ghidra is an open-source reverse engineering suite, primarily
developed by the United States National Security Agency.
We used version 11.3.

(4) angr is an open-source binary analysis research platform
primarily developed by various research institutions in the
United States. We used version 9.2.169.

(5) Retypd is a binary type recovery algorithm primarily devel-
oped by GrammaTech [20]. GrammaTech released an open-
source implementation of the algorithm [11] as well as a
Ghidra plugin [12] on GitHub. We used the most recent
commit of both repositories as of January 2025.

5.2 General Evaluation
Table 3 and Table 4 show the evaluation result against all variables.
angr and Hex-Rays achieve the highest variable coverage with
only 13,122 and 13,616 missed variables out of 28,564 ground-truth
variables for -O0 binaries and 812 and 419 missed variables out of
3,492 ground-truth variables for -O2 binaries, respectively. Hex-
Rays also leads in type identification accuracy, correctly identifying
the types of 10,194 variables, for -O0 binaries and 1,737 variables
for -O2 binaries.

Due to the intrinsic difficulty with inferring complex types (e.g.,
arrays and structs) for stack variables, some decompilers struggle
with them andmay break them into their constituent elements. This
can lead to high FPRs. To tackle this bias, we divide the functions
into two sets, Funcp (functions with only primitive-typed variables)
and Funcc (functions with complex-typed variables). Results in
Table 5 and Table 6 show that only a few decompilers see a drastic
decrease in the number of false positives.

5.2.1 Variable Coverage. Variable coverage reflects how well each
decompiler identifies the presence of variables from functions, and
the results are shown in Figure 5 and Figure 6. angr and Hex-Rays
stands out by a large margin, achieving >50% variable recovery
for -O0 binaries and >75% variable recovery for -O2 binaries. Sur-
prisingly, variable coverage across all decompilers increases when
the dataset is restricted to only functions with complex types. This
suggests that these complex variables are in some sense easier for
decompilers to assess existence.

5.2.2 Type Inference Accuracy. Figure 7 and Figure 8 show how
accurately different decompilers infer variable types. Out of all

Table 4: Variable type evaluation for all variables.

Decompilers Varcorr Varincorr Varcorr +Varincorr
-O0 (Vargt = 28,564)

angr 8,402 7,040 15,442
Binary Ninja 5,337 3,594 8,931
Ghidra 6,161 2,653 8,814
Hex-Rays 10,194 4,754 14,948
Retypd 5,789 4,034 9,823

-O2 (Vargt = 3,492)

angr 996 1,684 2,680
Binary Ninja 941 1,203 2,144
Ghidra 1,042 1,042 2,084
Hex-Rays 1,737 1,336 3,073
Retypd 601 1,082 1,683

Table 5: Variable location evaluation for function sets.

Decompilers Vardec | Vardec − Vargt | | Vargt − Vardec |
-O0

Funcp (Vargt = 19,898)

angr 11,672 2,310 10,536
Binary Ninja 6,011 1,095 14,982
Ghidra 5,839 1,373 15,432
Hex-Rays 10,034 1,411 11,275
Retypd 17,580 11,361 13,679

Funcc (Vargt = 8,666)

angr 11,360 5,280 2,586
Binary Ninja 8,128 4,113 4,651
Ghidra 9,320 4,972 4,318
Hex-Rays 8,892 2,567 2,341
Retypd 10,881 7,277 5,062

-O2

Funcp (Vargt = 1,333)

angr 4,957 4,086 462
Binary Ninja 3,068 2,579 844
Ghidra 3,627 3,176 882
Hex-Rays 3,515 2,415 233
Retypd 40,141 39,691 883

Funcc (Vargt = 2,159)

angr 6,414 4,605 350
Binary Ninja 4,968 3,313 504
Ghidra 5,101 3,468 526
Hex-Rays 4,433 2,460 186
Retypd 17,803 16,570 926

the decompilers evaluated, Hex-Rays performs the best across all
categories of variables, achieving an overall accuracy of 35.69% for
-O0 binaries and 49.74% for -O2 binaries.

Closely following Hex-Rays is angr, achieving an overall accu-
racy of 29.41% for -O0 binaries and 28.52% for -O2 binaries.

5.2.3 Type Inference Precision. Figure 9 and Figure 10 present the
precision—the proportion of correctly inferred variable types rela-
tive to all variables they identify—of each decompiler across three
function subsets. As expected, precision rises markedly for Funcp
compared to Funcc, highlighting the relative ease of inferring sim-
ple data types versus complex structures.

Out of all decompilers, Hex-Rays achieves the highest precision
across all function sets and optimizations, with 54.92% overall for
-O0 binaries and 21.85% overall for -O2 binaries. Ghidra follows,
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Table 6: Variable type evaluation for function sets.

Decompilers Varcorr Varincorr Varcorr +Varincorr
-O0

Funcp (Vargt = 19,898)

angr 5,480 3,882 9,362
Binary Ninja 3,245 1,671 4,916
Ghidra 3,462 1,004 4,466
Hex-Rays 6,066 2,557 8,623
Retypd 3,957 2,262 6,219

Funcc (Vargt = 8,666)

angr 2,922 3,158 6,080
Binary Ninja 2,092 1,923 4,015
Ghidra 2,699 1,649 4,348
Hex-Rays 4,128 2,197 6,325
Retypd 1,832 1,772 3,604

-O2

Funcp (Vargt = 1,333)

angr 444 427 871
Binary Ninja 317 172 489
Ghidra 292 159 451
Hex-Rays 717 383 1,100
Retypd 207 243 450

Funcc (Vargt = 2,159)

angr 552 1,257 1,809
Binary Ninja 624 1,031 1,655
Ghidra 750 883 1,633
Hex-Rays 1,020 953 1,973
Retypd 394 839 1,233
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Figure 5: Coverage comparison of type inference across func-
tion sets for -O0 optimization.

attaining 40.64% overall for -O0 binaries and 11.94% overall for
-O2 binaries. angr and Binary Ninja exhibit moderate performance
overall, with overall lower scores than Hex-Rays or Ghidra, while
Retypd trails the other tools by a wide margin.

5.2.4 Type Inference False Positive Rate. Figure 11 and Figure 12
show false positive rates in type inference by each decompiler. As
expected, all decompilers saw a drop in their false positive rates
in Funcp for -O0, highlighting the universal struggle of identify-
ing complex data types and breaking them into their constituent
elements. Surprisingly, the same trend is not observed for -O2,

All Functions Funcp Funcc
0

50

100

76
.7
5

65
.3
4

83
.7
9

61
.4

36
.6
8

76
.6
6

59
.6
8

33
.8
3

75
.6
488

82
.5
2 91
.3
8

48
.2

33
.7
6

57
.1
1

Function Sets

Co
ve
ra
ge

(%
)

angr Binary Ninja Ghidra Hex-Rays Retypd

Figure 6: Coverage comparison of type inference across func-
tion sets for -O2 optimization.
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Figure 7: Accuracy comparison of type inference across func-
tion sets for -O0 optimization.

where false positive rates decrease for all decompilers for Funcc as
compared to Funcp.

5.3 Type-Specific Analysis
In this subsection we report binary type inference performance for
individual type in each decompiler.

5.3.1 Primitive Types and Pointers. Primitive types are the most
basic types (e.g., char, int, long long, float, etc.) that the C language
provides as built-ins. Decompilers are typically accurate at iden-
tifying the type and size of these variables (Table 7). However,
when accounting for pointers, the picture is less clear. Unlike scalar
types such as int and char, which directly store values, a pointer
holds a memory address referencing another data object, which
is indistinguishable from a pointer-sized integer in machine code.
Moreover, correctly inferring a pointer’s target adds an extra layer
of complexity, as the decompiler must analyze dereference oper-
ations and pointer arithmetic to reconstruct the intended target
type. Table 8 shows that, as a result, decompilers often misidentify
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Figure 8: Accuracy comparison of type inference across func-
tion sets for -O2 optimization.
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Figure 9: Precision comparison of type inference across func-
tion sets for -O0 optimization.

pointers—either assigning the wrong target or mistaking them for
non-pointer types.

5.3.2 Complex Types. We term structs and arrays as complex types,
which are types defined by aggregating multiple primitive types.
Because structs can contain many different types, the decompiler
must infer a type for each field of a struct. In comparison, arrays
comprise a single primitive type, so once the type of a single ele-
ment and the array size are inferred, the full array type is known.
Despite their differences, arrays and structs share a commonality:
To refer to different elements of either, the program must use a base
pointer and an offset. Additionally, compilers can add padding to
the type structures to make sure that memory accesses are aligned
to architectural standards.

As a result of these factors, decompilers often struggle to accu-
rately reconstruct array and struct layouts, as Table 9 and Table 10
show.

5.3.3 Primitive Types. This section evaluates each decompiler’s ca-
pability in recovering the aforementioned properties for primitive
type variables by breaking the analysis into two parts: (1) Correct
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Figure 10: Precision comparison of type inference across
function sets for -O2 optimization.
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Figure 11: False positive rate comparison of type inference
across function sets for -O0 optimization.

Type Inference and (2) Correct Size Inference. The first part analyzes
whether a decompiler assigns the correct type (e.g., int) to a vari-
able, while the second part investigates whether the decompiler
infers the correct size (byte-width) of the variable. Pointers add
an extra layer of complexity in the decompilation process, since a
decompiler needs to identify a variable as a pointer and also deter-
mine the target type for the pointer. To represent this challenge,
we measure how many variables identified by the decompiler were
identified as pointers and how many were identified with correct
target type.

char, int, and long long. Figure 13 compares each decompiler’s
ability to infer correct types for variables of common primitive types
(char, int, long long), while Figure 14 compares their accuracy
in inferring the corresponding variable sizes across -O0 and -O2
optimizations. angr and Hex-Rays outperform other decompilers
in type inference accuracy. All decompilers achieve high accuracy
in size inference, with the only exception being Retypd, which
struggles with long long types.
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Figure 12: False Positive Rate comparison of type inference
across function sets for -O2 optimization.
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Figure 13: Type inference comparison across char, int, and
long long for -O0 and -O2 optimizations.

Pointers. Figure 15 compares pointer identification and correct-
target resolution, while Figure 16 compares pointer-size inference,
for binaries compiled at -O0 and -O2. Hex-Rays outperforms other
tools in pointer identification, successfully identifying pointers for
27.57% of variables, and accurately resolving correct pointer tar-
gets for 19.24% of variables for -O0 binaries, surpassing its closest
competitor, angr, by a small margin. For -O2 binaries, Hex-Rays
retains the lead, identifying 49.17% of pointers and correctly re-
solving 40.59% of targets; Ghidra follows with 31.27% identified
and 25.91% resolved, outperforming angr (26.65% identified; 12.21%
resolved). However, the relatively low identification rates across
all decompilers highlight a key aspect for improvement in binary
type inference. For size inference, performance is generally strong
across all decompilers.

Table 7: Type-wise evaluation results.

Decompilers Vardec Varcorr Varincorr | Vargt − Vardec |
-O0

char (Vargt = 509)

angr 286 286 0 223
Binary Ninja 143 142 1 366
Ghidra 144 142 2 365
Hex-Rays 251 246 5 258
Retypd 162 155 7 347

int (Vargt = 7,739)

angr 4,613 4,551 62 3,126
Binary Ninja 2,790 2,720 70 4,949
Ghidra 2,532 2,473 59 5,207
Hex-Rays 4,119 3,943 176 3,620
Retypd 3,096 3,078 18 4,643

long long (Vargt = 5,336)

angr 3,008 2,305 703 2,328
Binary Ninja 1,633 1,414 219 3,703
Ghidra 1,947 1,700 247 3,389
Hex-Rays 3,051 2,281 770 2,285
Retypd 1,891 1,269 622 3,445

-O2

char (Vargt = 26)

angr 18 16 2 8
Binary Ninja 17 15 2 9
Ghidra 22 18 4 4
Hex-Rays 26 21 5 0
Retypd 17 6 11 9

int (Vargt = 756)

angr 596 546 50 160
Binary Ninja 416 339 77 340
Ghidra 334 189 145 422
Hex-Rays 693 557 136 63
Retypd 317 238 79 439

long long (Vargt = 687)

angr 540 356 184 147
Binary Ninja 426 333 93 261
Ghidra 358 239 119 329
Hex-Rays 625 405 220 62
Retypd 357 237 120 330

Table 8: Pointer evaluation results.

Decompilers Vardec Varcorr Varincorr_target Varnot_ptr | Vargt − Vardec |
-O0 (Vargt = 12,600)

angr 5,416 1,239 1,567 2,610 7,184
Binary Ninja 2,500 890 928 682 10,100
Ghidra 2,873 1,456 691 726 9,727
Hex-Rays 5,462 2,424 1,050 1,988 7,138
Retypd 3,736 1,115 756 1,865 8,864

-O2 (Vargt = 1,212)

angr 742 148 175 419 470
Binary Ninja 466 184 115 167 746
Ghidra 606 314 65 227 606
Hex-Rays 1,011 492 104 415 201
Retypd 480 104 70 306 732

5.3.4 Complex Types. This section focuses on evaluating each de-
compilers type inference capabilities for complex types: arrays and
structs. Structs are usually identified by decompilers based on how
a variable is used across functions and matching function argument
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Table 9: Array evaluation results. Varcorr_len: arrays with cor-
rectly inferred length; Varincorr_len: arrays with correct base
but incorrect length; Varincorr: arrays with incorrect type in-
ference.

Decompilers Vardec Varcorr_len Varincorr_len Varincorr | Vargt −Vardec |
-O0 (Vargt = 535)

angr 530 11 91 428 5
Binary Ninja 506 19 104 383 29
Ghidra 498 42 189 267 37
Hex-Rays 510 46 184 280 25
Retypd 139 6 30 103 396

-O2 (Vargt = 453)

angr 451 34 17 400 2
Binary Ninja 448 40 54 354 5
Ghidra 357 53 94 210 96
Hex-Rays 370 66 99 205 83
Retypd 203 1 12 190 250

Table 10: Struct evaluation results.

Decompilers Vardec Varcorr Varincorr | Vargt −Vardec |
-O0 (Vargt = 800)

angr 770 20 750 30
Binary Ninja 756 63 693 44
Ghidra 756 150 606 44
Hex-Rays 747 162 585 53
Retypd 302 36 266 498

-O2 (Vargt = 562)

angr 546 15 531 16
Binary Ninja 549 83 466 13
Ghidra 476 84 392 86
Hex-Rays 481 96 385 81
Retypd 353 21 332 209

signatures. Although angr and Retypd are able to recover struct
layouts based on code patterns, evaluation of these reconstructed
structs is out of scope of this paper. We focus on the named structs
directly identified by the decompilers (eg. FILE, stat etc.) to eval-
uate the struct identification accuracy. Evaluating arrays is more
complicated, as decompilers need to infer not only the base type of
the array but also the length. Correspondingly, we report 2 metrics,
array variables that were identified correctly (same element type
and length) and array variables that were identified as arrays, had
the same element type but had the wrong length.

Structs. Figure 17 shows the percentage of structs correctly identi-
fied by different decompilers across -O0 and -O2 optimizations. At
-O0, Hex-Rays leads, correctly identifying 20.25% of structs. In con-
trast, angr and Retypd struggle considerably, with low accuracies
of only 2.50% and 4.50%, respectively. For -O2 binaries, the pattern
persists but the gap narrows: Hex-Rays achieves 17.08%, Ghidra
14.95%, and Binary Ninja 14.77%, while angr and Retypd remain
low at 2.67% and 3.74%. The results highlight that struct inference
remains a challenging task for most decompilers.
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Figure 14: Size inference comparison across char, int, and
long long for -O0 and -O2 optimizations.
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Figure 15: Pointer identification and target resolution accu-
racy for -O0 and -O2 optimizations.

Arrays. Figure 18 illustrates the accuracy of array identification
across different decompilers and optimizations (-O0 and -O2), high-
lighting arrays correctly identified and those identified with correct
base addresses but incorrect lengths. At -O0, Hex-Rays and Ghidra
identify the highest total number of arrays (42.99% and 43.18% re-
spectively), although the majority have incorrect lengths despite
correct base addresses. For -O2 binaries, the trend is similar, with
Hex-Rays and Ghidra again identifying the most arrays (36.42%
and 32.45% respectively). It is worth noting that most decompilers
struggle to accurately infer array lengths.
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Figure 16: Pointer size inference accuracy for -O0 and -O2
optimizations.
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Figure 17: Struct identification accuracy for -O0 and -O2 opti-
mizations.

5.4 Case Study: Binary Ninja’s Low Coverage
Binary Ninja seems to completely discard some stack variables even
though they are in fact written. for example, in the [ (synonym for
test in shell scripting conditional expressions) binary, at address
0x403a59, the result of strcoll is written to the stack at [rbp -
0x1b0], and then immediately read out again at 0x403a68. This
results in the creation of a variable in Binary Ninja’s low- and mid-
level IRs, but in the high level IR and pseudo-C, there is no sign of a
stack write–only that the value is stored to a register variable and
then discarded after being passed on. This omission is a prescient
contributor to the low coverage score that Binary Ninja receives
in our evaluation, and furthermore that it does in fact represent a
deficiency in the decompiler, since an analyst working on a binary
exploitation task will want to know at least the memory regions
touched by a piece of pseudo-C from looking at it. This would be
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Figure 18: Array identification and length inference accuracy
for -O0 and -O2 optimizations.

less of an issue if the pseudo-Cwas agnostic to storage locations, but
it does in fact show a variable with register storage being written
to and not a variable with stack storage being written to.

6 Discussion
In this section, we discuss the limitations of our study and potential
avenues for future work.

6.1 Limitations
Our study has several limitations that should be considered when
interpreting the results. First off, in order to take into account the
subpar performance of angr and Ghidra-Retypd, we only chose
binaries smaller than 800 KB, which might have biased the dataset
against bigger and more complex real-world binaries. Second, our
experiments are limited to x86-64 Linux binaries, so the findings
may not generalize to other architectures (e.g., ARM and AArch64)
or platforms (e.g., Windows). We also note that released versions
of code (e.g., the Retypd Ghidra plugin [12]) may not completely or
accurately reflect the originally published research (e.g., the Retypd
paper [20]) due to the potential existence of software bugs. Future
work that improves upon this study may address these limitations.

6.2 Future Work
Successors to this research could perform similar studies that ad-
dress the limitation of this one, including larger binaries, evaluating
across more optimization levels, and architectures beyond x86-64.
Additionally, based on the fact that the two research prototypes
evaluated in this survey, angr and Retypd, were the only decom-
pilers able to generate struct layouts from scratch instead of only
identifying usages of structs from popular libraries, it seems that
this capability is an emerging technology which has not yet made
its way into commercial offerings. As this technique matures, it
should be possible to perform a similar comparative analysis on
decompilers’ ability to perform arbitrary struct recovery. Hopefully,
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this work provides a solid foundation on which we can improve in
decompiler performance in a principled manner.

7 Related Work
Over the past decade, researchers have conducted several surveys,
benchmarks, and comparative studies for decompilers, each focus-
ing on different aspects.

The work Type Inference on Executables [4] presents a compre-
hensive survey of binary type-recovery approaches, examining
static, dynamic, and hybrid analysis techniques. This survey high-
lights many the challenges inherit to recovering complex data types
from stripped binaries. The work also highlights the need for stan-
dardized benchmarks and quantitative metrics to fairly compare
type-inference algorithms.

There have been other survey-based studies such as Fawareh
et. al’s 2024 survey [10], which provides a broad survey of modern
decompilation techniques, comparing decompilers and highlight-
ing recurring error patterns in their outputs. Dramko et. al’s 2024
survey [8] conducts an in-depth evaluation of C decompiler output
across multiple tools using open-coding analysis, resulting in a
detailed taxonomy of decompilation issues that classifies structural
inaccuracies.

Liu et. al’s 2020 evaluation [17] tested C decompilers by recom-
piling their outputs and checking behavioral consistency with the
original binaries. Cao et. al’s 2024 evaluation [5] assessed main-
stream decompilers based on their semantic consistency and code
readability. It also reports that despite improvements over the years,
decompiled C code often still resembles compiler-generated pat-
terns rather than human-written code.

Kline et. al [14] developed a framework for quantitatively assess-
ing a decompiler’s ability to recover source-level constructs (func-
tions, variables, data types) with ground-truth comparisons. Tan et.
al [26] introduced DecompileBench, a large-scale open benchmark
suite for decompiler evaluation. DecompileBench compared six
commercial decompilers and six learning-based code generation
models under consistent conditions, providing insights into both
functional correctness and code understandability.

8 Conclusion
In this paper, we conducted a benchmarking study on the type
inference accuracy of five decompilers and type inference solutions:
Hex-Rays, Binary Ninja, Ghidra, angr, and Retypd (implemented
as Ghidra plugin). Using a dataset of binaries compiled from Nixp-
kgs at different optimization levels, we extracted type information
from debug symbols and compared it with the types inferred by the
decompilers. Our results revealed significant variation among the
tools. Hex-Rays demonstrated the best overall performance, achiev-
ing the highest type inference accuracy and precision, particularly
excelling in primitive type inference. angr closely followed Hex-
Rays, exhibiting slightly better coverage and accuracy for primitive
types but struggling with complex types. Ghidra showed strength in
handling complex data structures such as structs and arrays, while
Binary Ninja maintained consistent performance across various
scenarios. Retypd displayed notable limitations across all metrics.
Overall, our findings highlight the distinct strengths and weak-
nesses of current state-of-the-art decompilers.
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