DEBRA: A Real-World Benchmark For Evaluating Deobfuscation
Methods

Zheyun Feng
University of New Hampshire
Durham, New Hampshire, USA
Zheyun.Feng@unh.edu

Abstract

Software obfuscation is a broadly adopted protection method that
hides representative information by transforming it into a highly
opaque but semantic-equivalent form. To date, a variety of deob-
fuscation methods have been developed to peel off the obfuscation
and expose the original program semantics. However, nearly all
deobfuscation tools are merely tested and evaluated on small toy
programs with ad-hoc configurations, leading to a fundamental
gap between the deobfuscation research and real-world practice.
We discover the key obstacle is due to the absence of a real-world,
large-scale testing benchmark that can systematically evaluate the
deobfuscation methods.

To fill this gap, we propose DEBRA, a comprehensive, large-scale
obfuscation benchmark crafted with a diverse range of real-world
programs for evaluating deobfuscation methods. First, we collect a
set of real-world open-source programs representing diverse obfus-
cation scenarios. Second, we design a metric-driven approach to
determine the crucial or sensitive functions to be obfuscated, be-
cause in real-world practice, only the critical parts of a program are
obfuscated to balance security and execution overhead. Instead of
blindly and arbitrarily obfuscating a program, this design makes our
obfuscation benchmark closely mirror the real-world practice. Next,
we obfuscate the selected areas in these programs with state-of-
the-art obfuscators and obfuscation techniques, resulting in DEBRA.
During our evaluation, the samples from DEBRA crashed the target
deobfuscators and exposed limitations that were not shown during
their original evaluation. With the hope of driving advancements
in deobfuscation research, DEBRA serves as a pioneering standard
benchmark for evaluating and comparing different deobfuscation
methods.

ACM Reference Format:

Zheyun Feng and Dongpeng Xu. 2025. DEBRA: A Real-World Benchmark
For Evaluating Deobfuscation Methods. In Proceedings of the 2025 Workshop
on Software Understanding and Reverse Engineering (SURE ’25), October
13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3733822.3764674

1 Introduction

Over the last decade, software obfuscation has seen a surge in
adoption across both benign and malicious domains. Commercial
software developers increasingly rely on obfuscation to safeguard

This work is licensed under a Creative Commons Attribution 4.0 International License.
SURE ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1910-3/25/10

https://doi.org/10.1145/3733822.3764674

Dongpeng Xu
University of New Hampshire
Durham, New Hampshire, USA
Dongpeng. Xu@unh.edu

intellectual properties and proprietary algorithms [23, 26], specifi-
cally targeting functions such as licensing checks, DRM enforce-
ment, password validation and key generation. On the other hand,
malware authors exploit it to elude security detection and analysis
techniques [21, 27, 34, 45]. Software obfuscation transforms the
original program into a highly intricate, yet functionally equivalent
form, thereby camouflaging the underlying intent. The intricacy in-
troduced by various obfuscation methods poses formidable hurdles
for security practitioners in program analysis and reverse engineer-
ing.

Recognizing the urgent need to address this issue, numerous
deobfuscation methods have been proposed and developed to un-
ravel the intricate layers of obfuscated code [10, 22, 25, 35, 41, 43].
Unfortunately, these automatic deobfuscation methods have seen
limited evaluation in real-world scenarios [6, 20]. One notable chal-
lenge is the absence of an open standard benchmark that accurately
reflects the complexity of real-world situations for evaluating deob-
fuscation methods. Existing evaluations are often conducted on toy
programs with simplistic structures, a limited selection of samples
sharing similar functionalities, or ad hoc settings without enough
reproducible details, making it difficult to validate and compare
the efficacy of different deobfuscation methods comprehensively
and impartially. The deficiency in public, standard, and practical
benchmarking has long hindered the advancement of effective
countermeasures against obfuscated malware.

In an effort to bridge the gap, we establish DEBRA, Deobfuscation
Evaluation Benchmark for Research and Analysis. DEBRA comprises
1,917 programs derived from obfuscating 224 function-level targets
selected by our metric-driven approach with three state-of-the-art
obfuscators and four prevalent obfuscation transformations under
tens of parametric configurations across 15 real-world, open-source,
and complex programs. Our metric-driven approach based on cal-
culating the sensitivity and centrality of a function identifies key
functions within the codebase of a program, simulating the obfusca-
tion strategies in real-world scenarios. This real-world benchmark
accurately reflects the situations in practical deobfuscation tasks.

In our evaluation, we use DEBRA to re-assess the deobfuscation
method proposed in [31] and Xyntia [24]. The results turned out
that both deobfuscators had limited capacity to process the real-
world samples from DEBRA. Furthermore, we investigate the root
causes of those failures and attribute them to the overfitting of both
deobfuscation methods to overly simplistic and synthetic bench-
marks. While they demonstrated promising results in their own
evaluation, DEBRA exposes their limitations in handling real-world
programs. In doing so, DEBRA not only facilitates the refinement of
existing deobfuscation methods but also supports the development
of more robust and adaptive cybersecurity strategies.

https://orcid.org/0009-0000-7185-2305
https://orcid.org/0000-0001-6596-9101
https://doi.org/10.1145/3733822.3764674
https://doi.org/10.1145/3733822.3764674
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3733822.3764674

SURE ’25, October 13-17, 2025, Taipei, Taiwan

In a nutshell, our paper delivers three pivotal contributions as
follows.

e We build a real-world benchmark to facilitate comprehen-
sive and reproducible deobfuscation method evaluations in
practical settings. We discern and highlight the gap in cur-
rent deobfuscation method evaluations and practices, and
use real-world programs and prevalent obfuscation transfor-
mations to establish DEBRA, serving as the new standard for
deobfuscation method evaluations.

e We design a generic and metric-driven approach to iden-
tify key functions that are prime candidates for obfuscation
within a program’s codebase. This approach scores functions
based on two core dimensions: sensitivity and centrality.

e We prove the efficacy of our benchmark by re-assessing the
performance of two advanced deobfuscation methods. The
process unveiled their limitations that were not reported
before.

We organize the paper as follows: Section 2 provides a summary
of the limitations we discerned in current deobfuscation method
evaluations and Section 3 describes our approach to address these
limitations. We elaborate the process of constructing DEBRA in Sec-
tion 4. An in-depth reassessment of two representative deobfusca-
tors using DEBRA is presented in Section 5. We discuss the future
plan and pertinent works in Section 6 and Section 7 respectively.
Finally, we conclude the paper in Section 8.

2 Background and Motivation

In this section, we first delineate the general concepts of software
obfuscation and deobfuscation. Next, we point out the limitations
buried in deobfuscation method evaluations and motivate the need
to develop a real-world benchmark to address the constraints.

2.1 Software Obfuscation and Deobfuscation

Software obfuscation is an act of transformation that preserves
the semantics of a program while altering its syntactic form to
impede direct understanding and analysis. This technique has been
extensively utilized in the protection of digital assets against piracy
and malicious reverse engineering across a variety of programming
languages and platforms.

Banescu et al. [9] published a comprehensive review of the tax-
onomies of software obfuscation techniques. Obfuscation can target
different abstraction levels: source code level [4], intermediate rep-
resentation level [17], and binary machine code level [1] as well
as different granularity levels: instruction, basic block, loop, func-
tion, program, and system. Obfuscation is allowed to be applied
across multiple levels based on the implementation decisions by
the developers. For instance, Control Flow Flattening [38] can be
employed both at the source code level [4] and the intermediate
representation level [17] to flatten a program’s natural control flow
into a more complex, less predictable form.

Software deobfuscation is the process of reversing obfuscated
applications, transforming an obscured part back into a form that
is more approachable to understand and analyze. Deobfuscation
techniques are continually evolving to counteract the abuse of
obfuscation especially in malware and viruses, which often employ

Zheyun Feng and Dongpeng Xu

such tactics to camouflage their malicious purposes and evade
detection. Deobfuscation is often considered more difficult than
obfuscation because of the asymmetric nature between the two
tasks.

As obfuscation techniques continue to evolve and become more
sophisticated, substantial efforts have been put into the develop-
ment of potent deobfuscation strategies to unveil the authentic
semantics of an obfuscated program. Strategies such as pattern
matching [12], symbolic execution [7], and program synthesis [10]
are widely adopted in deobfuscation research. Among these, sym-
bolic execution and program synthesis have emerged as the state-
of-the-art techniques. Symbolic execution systematically explores
program paths and simulates program execution by treating con-
crete program inputs as symbolic ones. It excels in discarding bogus
and infeasible branches introduced by obfuscation techniques such
as opaque predicates but falls short when the number of possible
execution paths becomes huge, leading to path explosion, or when
the program interacts heavily with system APIs or the network,
resulting in constraint-solving difficulties. By contrast, program
synthesis examines input-output samples and generates a simpler
but semantically equivalent version of the obfuscated program. It
is obfuscation-agnostic and less hindered by syntactic complex-
ities. Its strength lies in reconstructing semantically equivalent
expressions or functions that are hard to analyze symbolically. For
example, a synthesizer examines the input/output samples of the
expression X + Y + 1+ (~ X | ~ Y) and the expression X | Y and
finds they are equivalent, thus it considers X | Y as the simplified
result of the former. However, when the search space of possible
candidates becomes very large, synthesis may time out or yield
imprecise results.

Meanwhile, obfuscation detection is a critical precursor of de-
obfuscation, focusing on the identification of obfuscated segments
within an application. It typically includes the steps of scanning,
analyzing, and reporting. However, obfuscation detection has often
been neglected as Xu et al. [41] pointed out that many analyses
operate under the presumption that the scope of obfuscated code is
known, thereby bypassing the crucial step of detection. A handful
of works recognize the unrealistic assumption and place the pin-
pointing of obfuscation areas as an initial step for their deobfusca-
tion tools. VMHunt [41] identifies the boundaries of virtualization-
obfuscated code from an execution trace before initiating its sim-
plification process. IDA Pro plugin gooMBA [2] locates before sim-
plifying potential Mixed Boolean-Arithmetic (MBA) expressions at
the intermediate representation when inputting a program to IDA
Pro.

2.2 Motivation

The development of deobfuscation methods is inherently guided by
the specific types of obfuscation they are designed to counteract.
A common strategy for evaluating a deobfuscation method starts
with a selection of previously used sample sets by peers or custom-
created sample sets depending on the focus of the deobfuscation
method (e.g., malware, binaries), which are subsequently obfus-
cated with the obfuscators that implement the pertinent type(s) of
obfuscation at the authors’ choices, thereby fabricating a controlled
environment to test their deobfuscation method. A comparative

DEBRA

analysis is conducted afterward between the vanilla and the deob-
fuscated version of the sample sets to showcase the capability of
the deobfuscation method which can be further quantified based on
experimental results. We carefully study the evaluation patterns of
existing deobfuscation methods and find that they seriously suffer
from the following limitations, which form the major motivation
of this work.

Toy Programs. Nearly all existing deobfuscation methods are
evaluated on toy programs. In this context, “toy programs” refer
to tiny programs with simple structures and functions that are not
used in real-world projects. Some common examples are imple-
mentations of algorithms from college assignments such as bubble
sort and binary search, simple cryptographic algorithms, as well as
synthesized programs produced by automated generators such as
Csmith [44] and USmith [28]. Tofighi-Shirazi et al. [36] evaluated
their deobfuscation approach partially with toy programs sourced
from GitHub. Similarly, Blazytko et al. [10] employed custom-built
toy programs to test the efficacy of their method. In particular, a
recent study [19] reported that toy programs are used in a strik-
ingly high number of evaluations for deobfuscation works. An on-
line repository, Obfuscation-Benchmarks [3] proposed by Banescu
et al. [8] steadily increases appearance in the evaluation of de-
obfuscation works. Nonetheless, this benchmark predominantly
incorporates simple toy programs which often only have one main
function.

The heavy reliance on toy programs poses a severe threat to the
validity of evaluation results, omitting feedback on the performance
of deobfuscation methods under complex scenarios encountered
in practical environments. Even though the evaluation results look
promising on toy programs, due to significantly higher complexities,
the same level of deobfuscation effectiveness cannot be reproduced
and guaranteed on real-world programs.

Arbitrary Obfuscation Region. In practice, to avoid unneces-
sary performance overhead, obfuscations are only applied to the
sensitive or critical parts of a target program. Thus modern obfusca-
tors are equipped with regional obfuscation feature, i.e., an explicit
specification of where and what the obfuscation is. For example,
Tigress necessitates the function name(s) as a required parameter
for execution, Code Virtualizer expects marked code regions with
built-in macros when obfuscating an ELF executable.

Nevertheless, we observe that random selection and whole pro-
gram obfuscation are the prevalent strategies in the existing deob-
fuscation evaluation. The authors rarely describe the exact regions
where obfuscation has been applied. For instance, DiANa [18] was
evaluated with a C/C++ set in which every program was fully obfus-
cated by O-LLVM. LOOP [25] was tested with programs obfuscated
by random insertion of opaque predicates.

Evaluations conducted on arbitrarily obfuscated targets lead to
unexpected exceptions and unsatisfied results. For instance, obfus-
cating a driver function may be both futile and tedious as sensitive
data or proprietary algorithms typically are not located in a driver
function in real-world programs. Whole program obfuscation is
hardly used in practice, yielding biased results when evaluating
a deobfuscation method in such setting. Moreover, real-world ob-
fuscators cannot handle all data/control structures, so obfuscation
could lead to incompatible errors or exit unexpectedly when obfus-
cating a function with features incompatible with an obfuscator.

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Table 1: A complete list view of all testbed programs.

Name Version Description LoC
bash 5.2.15 Unix shell and command language 137.5K
chmod 94 Utility to change access permissions 36.6K
cp 9.4 Utility to copy files and directories 41.1K
curl 8.3 Toolkit for transferring data with URLs 316.4K
find 4.9 Utility to search files and directories ~ 192.8K
gee 11.4 Compiler system 8.6M
grep 3.11 Utility to search specific patterns 170.0K
gzip 1.13 Data compressor 92.3K
httpd 2.4.57 HTTP server 217.0K
Is 9.4 Utility to display files/directories 424K
nano 7.2 Text editor 85.5K
OpenSSL 3.1.3 Cryptography toolkit 702.5K
QEMU 8.11 Machine emulator and virtualizer 7.1M
SQLite 3.43 SQL database engine 200.8K
tar 1.35 File archiver 231.2K

Absence of Standards. Existing deobfuscation experiments are
conducted on custom-created micro sample sets or ad hoc case stud-
ies without sufficient details documented [13, 29], which hinders
the comparison evaluation with peer tools. This lack of standard
undermines the completeness, validity, and reproducibility of the
evaluation results [37]. Another study [19] also concludes that a
lack of standardized, representative benchmarks exists in software
protection research.

Our Insight. Motivated to address these limitations, we take the
first step to create DEBRA, a benchmark that incorporates curated
and marked obfuscation targets at function-level within real-world
and open-source programs to facilitate comprehensive deobfusca-
tion method evaluations. Our goal is to provide an environment
where deobfuscation methods can be evaluated in scenarios that
closely mirror real-world conditions. Researchers and developers
can measure the efficacy of their methods in real-world settings,
the evaluation results can be directly used to compare with peer
tools to gain insights into the strengths and weaknesses of their
methods.

3 Method

To address the aforementioned limitations, our design of DEBRA
involves three core aspects:

(1) Real-world Testbed. We have carefully curated real-world
open-source programs as the testbed programs. Our bench-
mark suite excludes toy programs to deliver realistic scenar-
ios of obfuscating programs in practice.

(2) Pinpoint Obfuscation. We design a novel metric-driven
method to automatically pinpoint the sensitive or critical
parts of a program to be obfuscated.

(3) Standardization. We obfuscate selected areas with standard,
reproducible obfuscation methods from state-of-the-art ob-
fuscators. The entire obfuscation process is well documented.
Moreover, DEBRA is open to the public and free to use, es-
tablishing it as a robust standard for comparing different
deobfuscation techniques.

The rest of this section elaborates the design of DEBRA.

SURE ’25, October 13-17, 2025, Taipei, Taiwan

3.1 Real-world Testbed

To ensure that each program in our benchmark closely mirrors
real-world scenarios, we meticulously select a range of programs
based on the following criteria.

e Unique Functionality. Ensure a spread of unique func-
tionality across programs is crucial for providing a broad
spectrum of real-world workloads. Different applications ex-
hibit varying performance characteristics, thereby support-
ing a comprehensive testbed for evaluating deobfuscation
techniques.

e Code Complexity. Applications with a degree of code com-
plexity are indispensable for a realistic evaluation of deobfus-
cation methods. Complex code structures emulate real-world
scenarios, providing a robust platform for assessing the effi-
cacy and performance of deobfuscation methods.

e Open-source. We focus on open-source programs to ensure
transparency in implementation details, facilitating deeper
analysis of deobfuscation method evaluations. At the same
time, it upholds reproducibility allowing the evaluations to
be both verifiable and comparable.

e Recognition and Maintenance. All programs selected are
actively maintained and well-recognized within the software
security research community. Their widespread recognition
reflects a high level of trust, while active maintenance guar-
antees reliability and completeness.

Overall, the selection process totals a list of 15 real-world pro-
grams in Table 1. Each testbed program represents a distinct gen-
eral category in software applications according to its functional
purpose. Column LoC approximates the code complexity of each
testbed program by counting the lines of code for C/C++ code in
codebases with scc (version 3.1.0). As opposed to toy programs,
which usually include less than 100 lines of code, our testbed pro-
grams contain 100,000 lines of code on average. Many of the testbed
programs debuted decades ago, yet they continue to be actively
maintained and remain prominent nowadays. All testbed programs
are open-source programs and were publicly accessible at the time
of writing this paper.

We restrict our scope to programs written in C/C++ language
as Kochberger et al. [19] note that C/C++ languages are the most
targeted languages in recent software security studies whereas a
severe shortage of suitable benchmarks exists.

3.2 Pinpoint Obfuscation

In real-world practice, typically only a select few critical functions
within a software require obfuscation to safeguard sensitive in-
formation as obfuscation notably impacts the performance [32].
To reflect this trait, we develop a novel metric-driven method to
automatically pinpoint target functions to apply obfuscation.

Function-level obfuscation has gained prominence in both aca-
demic research and industrial applications. In a broad examination
of obfuscation techniques, 10 out of 31 obfuscation transformations
are aimed at function level, underscoring the importance of this
category in the field [9]. Given the prevalence of function-level
obfuscation, our benchmark is designed to focus specifically on this
granularity.

Zheyun Feng and Dongpeng Xu

1 |static bool

2 | set_owner (..., struct stat const xsrc_sb,
)

31 {

4 uid_t uid = src_sb->st_uid;

5 gid_t gid = src_sb->st_gid;

6

703

Figure 1: An example candidate for obfuscation is the
set_owner function in the cp program, where the user ID
and group ID are assigned directly to variable uid and gid
without any safeguarding measures to conceal semantics.

However, not all functions within a program are equally suscep-
tible or attractive to reverse engineering attacks. Functions that
perform critical tasks, manipulate sensitive data, or carry propri-
etary assets are often the prime candidates for obfuscation, given
their inner values to security risks. These considerations drive the
needs for an analytical selection process to identify a subset of
functions within the programs in our benchmark, optimized for a
balanced evaluation of the potency, stealth, cost, and resilience of
an obfuscation technique [11].

To fulfill the needs and automate the selection process, we de-
velop a static source code analyzer that inspects the source code files,
evaluating various function-level attributes against pre-defined cri-
teria and filtering out suitable functions as obfuscation targets
within testbed programs. The criteria we employ in the automated
selection are based on the following two aspects.

Function Sensitivity. Sensitivity, in this context, refers to a
function’s possession of sensitive information that could be the
target an attacker is hunting for, making it a prime candidate for
obfuscation protection.

To investigate the sensitivity of a function, we examine its input
and output behaviors. Functions that engage (e.g., read from or
write to) with external environments (e.g., text files, databases) can
be considered sensitive, given their direct impact on data confiden-
tiality. Sensitive information (e,g., user input password, calculated
results) is integrated into or detached from the data flow in a bare
state without safeguarding measures during these interactions. At
the same time, we look for functions that interact with sensitive
variables, especially those with names like "password", "key", "id", or
other similar variants that would typically imply the presence and
storage of sensitive information. Codebases are often constructed
rationally and developers often adopt such naming conventions to
maintain code readability, making these variables easy to identify.

To quantify the sensitivity, our analyzer will specifically monitor
the count of variables with sensitive naming conventions and the
frequencies of I/O operations with external environment. Together,
these metrics provide a solid estimate of a function’s sensitivity.

For instance, the set_owner function is a sensitive function iden-
tified by our source code analyzer within the source file copy.c of
the c¢p program where it deals with user ID and group ID to set
the ownership of a destination file or directory during a file copy
operation. As shown in Figure 1, the values of user ID and group

DEBRA

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Figure 2: The call graph of the find_next_block function. All nodes are functions that directly or indirectly call find_next_block.
The bold node at the top represents the find_next_block function, and the nodes with red borders are recursive functions. For

readability, function names are omitted.

ID are directly stored in the variable uid and gid without any safe-
guarding measures to conceal their semantics. The bare sensitive
data is exposed to an attacker who could easily tamper with the
two variables to alter the ownership in an unauthorized way. The
sensitive nature makes the function set_owner an ideal candidate
for extra protection.

Function Centrality. Centrality signifies the functional impor-
tance of a function within the application’s workflow. Functions
with higher centrality will be more central to the logic of an appli-
cation, making it a more worthwhile target for obfuscation.

More specifically, from a static perspective, we identify critical
path functions, which are functions that sit at the crux of the ap-
plication’s control flow graph. These functions often serve as the
decision-making points. From a dynamic perspective, we gauge
the execution frequency of a function under different inputs, mea-
suring how often a function is invoked during the application’s
runtime. Functions with higher execution frequencies typically play
a more pivotal role in the application’s operational flow and can be
considered as centrality functions.

In assessing a function’s centrality, we compute the function’s
invocation dynamics (e.g., how many times it calls other functions
and how many times it is called by other functions), and the ex-
ecution frequency of a function across various runs. Leveraging
ChatGPT’s exceptional generation power [40], execution instances

are generated with prompts similar to "Can you provide me with
diverse and practical usages of the program Is? Please include a va-
riety of examples covering different flags, patterns and scenarios."
and manually verified thereafter. Our analyzer will analyze the two
metrics, providing a comprehensive quantifiable basis for assessing
a function’s centrality.

Figure 2 shows an example from the source file buffer.c of the
tar program. The find_next_block function is a central function
identified by our source code analyzer. It plays an important role
in deciding and managing the subsequent data block to be read
from or written to an archive. Its centrality is underscored by the
substantial amount of functions that are dependent on its output.
Any malicious modifications of its underlying logic would crash
the entire program in the worst scenario. Therefore, the pivotal
nature makes the find_next_block function a reasonable target for
obfuscation.

Nevertheless, our approach may fail to capture functions whose
sensitivity is only evident through code reasoning. For example,
functions that implicitly handle encryption keys without "sensitive"
variables declared and used could be overlooked. Conversely, our
approach may surface functions that are not realistic protection
targets. For instance, utility functions that frequently perform I/O
operations could be mistakenly flagged with high centrality. That
said, due to the characteristics of our testbed programs, overlooked

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Zheyun Feng and Dongpeng Xu

Table 2: Obfuscators and obfuscation transformations with parametric values and ranges featured in DEBRA.

Obfuscator Version Obfuscation Option Value
VirtualizeConditionalKinds ~ branch
VirtualizeDispatch switch, call, ifnest
Virtualization VirtualizeOperands stack
VirtualizeSuperOpsRatio [0.0, 1.5]
VirtualizeMaxMergeLength [0, 30]
. InitOpaqueStructs list, array
Tigress 3.3.3 Ovaque Predicates InitOpaqueCount [4, 20]
paqu AddOpaqueKinds true, bug, junk
AddOpaqueCount [4, 20]
FlattenDispatch switch
Control Flow Flattenin FlattenRandomizeBlocks true
W & FlattenSplitBasicBlocks true
FlattenConditionalKinds branch
Code Virtualizer 3.1.2 Virtualization Custom Virtual Machine Fish White, Dolphin Red, Eagle Black
. . . Add Depth: [1, 25]
Loki None Encode Arithmetic Subtract Depth: [1, 25]

functions tend to be a small minority and misidentified candidates
can be filtered out by human verification.

3.3 Standardization

We select an array of obfuscation methods from state-of-the-art
obfuscators, as listed in Table 2 to obfuscate function targets de-
termined by the source code analyzer. We release our benchmark
for public use. To the best of our knowledge, DEBRA is the first
open benchmark built upon real-world programs for deobfuscation
method evaluations, this lays a standardization for deobfuscation
method evaluations so that future work can have a standardized set
to evaluate their works, ensuring the validity, comparability, and
reproducibility of the evaluation results.

We identified a recurring set of obfuscation techniques through
a review of the seminal works on the taxonomy and categoriza-
tion of obfuscation techniques [9, 11, 30, 33, 42]. The recurrence of
certain obfuscation techniques underscores their prevalence and
significance in the field. Therefore, we use those obfuscation tech-
niques to generate the obfuscated executables for our benchmark,
ensuring alignment with real-world scenarios. It is noteworthy that
certain obfuscation techniques exhibit overlapping functionalities
or are essentially identical, are known by different names due to
varied naming conventions. For instance, Garbage Insertion [9] and
Junk codes [42] essentially refer to the same obfuscation technique
aimed at thwarting attackers by adding extraneous instructions
to the code. To eliminate any ambiguities, we have adhered to the
nomenclature outlined in [9].

The Obfuscation column in Table 2 presents a full list of selected
obfuscation techniques featured in DEBRA. Control Flow Flattening
conceals a program’s natural control flow by consolidating it into
a flat dispatch structure inside a loop. Encode Arithmetic replaces
simple arithmetic expressions with more complex, yet equivalent
representations. Opaque Predicate introduces deceptive conditions
with truth values predetermined at obfuscation to mislead static

analyzers. Encode Literal transforms integer or string literals into
equivalent but intricate expressions to hide their straightforward
representations. Virtualization obfuscation transforms native code
into bytecode, which is represented in a custom instruction set ar-
chitecture. An accompanying virtual machine or emulator is tasked
with interpreting and emulating the bytecode during runtime.

The Obfuscator and Version columns in Table 2 list the speci-
fications of the obfuscators. Tigress, one of the most extensively
used obfuscators in academia and industry, supports an array of
obfuscation techniques with user-configurable settings. Code Virtu-
alizer specializes in virtualization, offering a range of custom virtual
machines varying in complexity, size, and speed that allow users to
tailor the obfuscation strength. Both obfuscators appear at the top
list of popular tools used in software protection research [19]. Loki,
an academic obfuscator prototype has the ability to synthesize di-
verse and robust Mixed Boolean-Arithmetic expressions to harden
VM handlers in virtualization obfuscation.

The Option and Value columns in Table 2 detail the configu-
rations for each obfuscation transformation. When obfuscating
replacers with Control Flow Flattening using Tigress, we opt for
the traditional switch dispatch method to conceal original control
flows. For the incorporation of opaque predicates into replacers,
we tune the AddOpaqueCount parameter to adjust the number of
opaque predicates, ranging from 4 to 20. Additionally, we set the
AddOpaqueKinds parameter to introduce opaque predicates of types
true, bug, junk into replacers’ function bodies. For virtualization
with Tigress, we primarily adjust the types of dispatch methods,
the types of operands allowed in the ISA, the numbers of super
operators, and the length of the longest sequence of instructions to
be merged to increase diversities.

In the settings of Code Virtualizer for virtualization, we select
three distinct virtual machines: Fish White, Dolphin Red, and Eagle
Black to virtualize the target functions. Custom virtual machines

DEBRA

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Sensitivity Rank by Functions

per Souce File

Function Resolution

Functiony:
Source Fileq
Functionqo:
Source Fileq

Functiong:
Source File

Executable
(compiled from a
testbed program)

Function;:
Source File1
Functions:
Source File
Functions:
Source File

= =

Centrality Rank by Functions
per Souce File

Output

_—
>
Source File
Functionqg: Functions:

Source Fileq - \
Functiong: Functions: \
Source Fileq Functiony Source Fileq \
Source Fileq

Functiony.1:)
Source File, Functiony: Functiony: /

Source File, Source File,)

Vi

N\ one:
SFuncnan.‘s Functiony: /
ource File, y
n Source File, /
~ //

Function:

Source File,

Functiony:

Source File, |:>
Functions:

Source File,

Function,:

Source File, :
Functionq:

Source File,

Functiony.q:

Source File,

Figure 3: The workflow of the source code analyzer.

provided by Code Virtualizer are uniquely denoted by a combina-
tion of an animal and a color (white, red, and black). An animal
refers to a set of VM architecture and color represents the degree
of complexity. For our purpose, we choose the three VMs to cover
complete complexity ranges. The Fish White VM represents the low-
est complexity configuration, Dolphin Red represents the medium
complexity configuration and Eagle Black represents the highest
complexity configuration.

For Encode Arithmetic, we select the MBA expressions synthe-
sized by Loki to substitute add and subtract expressions in replacers.
We do not use the internal MBA expressions in Tigress as it has been
proved that MBA expressions featured in Tigress are limited by
hand-generated rules and not robust enough to thwart attacks [32].

4 Implementation

In this section, we first present the implementation of our source
code analyzer in Section 4.1 and then we elaborate the generation
of DEBRA in Section 4.2.

4.1 Source Code Analyzer

Figure 3 depicts the workflow of our source code analyzer. First,
it reads an executable compiled with both debugging information
and profiling enabled. Next, the function resolution stage extracts
functions from the source files associated with the executable. Then
the extracted functions within each source file are ranked based on
sensitivity and centrality respectively in descending order. The top
M functions with the greatest sensitivity and the top N functions
with the greatest centrality from each source file are stored in a
result set as the targets for further obfuscation. M and N are user-
defined thresholds, we set M and N to three for demonstration
purposes in Figure 3 and adopt the same values for building DEBRA.
Any dependent functions defined in external libraries or third-party
dependencies are excluded as they are not a native part of a testbed
program.

The source code analyzer is built on top of pycparser (version
2.21) to parse source code files and ascertain the sensitivity for
functions, Cally and gprof (version 2.30) to reason and profile

centrality for functions. In total, our source code analyzer is written
in approximately 1,200 lines of Python code.

4.2 Generation of DEBRA

The automated selection process, followed by human verification,
filtered out 224 qualified function-level targets within 15 testbed
programs. These targets are subsequently processed with a selec-
tion of obfuscation techniques to generate the benchmark. The
generation process took about 25 hours on a desktop equipped
with AMD Threadripper 1900X 8-Core CPU, 64 GB RAM, NVIDIA
2080Ti GPU, and Ubuntu 18.04 operating system, resulting in a total
of 1,917 obfuscated executables.

Tigress provides command line options that enable users to
specify obfuscation transformations and tune obfuscation param-
eters. However, a known limitation of Tigress is its inability to
fully support obfuscating code that contains features beyond the
C99 standard!. This poses a challenge for our purpose as all of the
testbed programs integrate modern features that are not recogniz-
able to Tigress, hindering its direct application. Previous works
have reported similar findings [16, 46]. To the best of our knowl-
edge, adding "-D" flags to define macros that coarsely resemble the
unrecognized built-in types and functions during the obfuscation
with Tigress could be a partially viable solution. Although theoret-
ically feasible, this approach is labor-intensive and risks altering
the original semantics of a program. To address this issue, we take
the first step and develop a workaround that indirectly integrates
Tigress obfuscation into the testbed programs.

Our approach draws inspiration from the concept of Encoding
Literals. More specifically, we replace integer literals within tar-
get functions with calls to crafted functions. We call these crafted
functions replacers. A replacer takes an integer literal as an input
parameter and is bloated with junk code. The output of a replacer is
an integer that matches the value of the input literal, thus preserv-
ing the target function’s semantics. We ensure that a replacer does
not contain any features that are not processable to Tigress. After
that, we obfuscate replacers with Tigress and inline them within

Uhttps://tigress.wtf/bugs.html

https://tigress.wtf/bugs.html

SURE ’25, October 13-17, 2025, Taipei, Taiwan

static bool
initialize_wd_for_exec (...)
{

if (execp->wd_for_exec->desc < 0)

~N Oy U W =

(a) Integer literal 0 at line 5 in the code snippet of the initial-
ize_wd_for_exec function is a target for replacer.

Zheyun Feng and Dongpeng Xu

(b) Control flow graph for the original initialize wd_for_exec func-

tion.

Figure 4: Simplified source code and control flow graph for the initialize wd_for_exec function in the find program.

| [[[IRIR

s

L Umyuuuil

Figure 5: Control flow graph for the initialize_wd_for_exec function in the find program after replacing the integer literal 0

with a Tigress-Flatten-transformed replacer.

the target functions. Prior to the inlining, we run 1,000 test cases
to verify the equivalence of inputs and outputs to a replacer. This
strategy retains the obfuscation effects within the target functions
and effectively eradicates the risks of semantics distortions. Figure
?? and Figure 5 display the control flow graphs for the function
initialize_wd_for_exec before and after the replacer is in place. As
we can observe, the effect of control flow flattening transformation
is evident.

Theoretically, we can produce an unlimited number of obfus-
cated samples because of the stochastic generation process of re-
placers. Consequently, a user will have access to a new batch of
obfuscated samples whenever she executes the generation script we
provided. However, for the demonstration in this paper, we present
all analyses based on a pre-generated and plan-to-release batch.

5 Experiment and Evaluation

To showcase the strengths and usability of our benchmark, we
first conduct a comparative analysis between DEBRA and three peer
benchmarks. Next, we reevaluate the deobfuscation method pro-
posed in [31] and Xyntia [24] with DEBRA. Both deobfuscators re-
ported impressive results but without systematic examination of
their adaptability to real-world programs in their original evalua-
tions.

5.1 Peer Benchmarks

SPEC CINT2006 [15], MiBench [14] and Obfuscation Benchmarks [8]
are the top three prevalent peer benchmarks identified by a recent
survey [19].

SPEC CINT2006. SPEC CINT2006 benchmark is the integer com-
ponent of the SPEC CPU benchmarks developed by SPEC in 2006
to provide performance measurements that can be used to compare
CPUs on different computer systems. SPEC CINT2006 includes
a collection of 12 real-world applications written in C/C++ with
distinct application areas.

MiBench. MiBench is an embedded benchmark suite developed
by Guthaus et al. in 2001 [14]. MiBench contains 35 applications
written in C, spanning six categories: Automotive and Industrial
Control, Consumer Devices, Office Automation, Networking, Secu-
rity, and Telecommunications.

Obfuscation Benchmarks. Obfuscation Benchmarks was intro-
duced in 2016 by Banescu et al. [8] to evaluate the strength of
different obfuscation techniques. It primarily comprises university-
level basic algorithm implementations, non-cryptographic hash
function implementations, as well as synthesized programs created
by Tigress’s Random Function transformation. All programs are
written or generated in C.

As depicted in Table 3, DEBRA outperforms the peer benchmarks
across multiple dimensions. It enhances diversities by deriving ob-
fuscated variants from 15 independent real-world programs span-
ning distinct functional categories, in contrast to 12 in SPEC CINT
2006, 6 in MiBench, and 3 in Obfuscation Benchmarks respectively.
Figure 6 presents a visualization of the count of non-toy programs
involved in each benchmark. Both DEBRA and SPEC CINT2006 ex-
clude any toy programs, with DEBRA having three more non-toy
programs compared to SPEC CINT2006. While MiBench includes

DEBRA

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Table 3: Comparison between DEBRA and the peer benchmarks.

Benchmark Number of Category Count of Non-toy Programs Accessibility = Released
DEBRA 15 15 Open access 2025
SPEC CINT2006 12 12 Restricted access 2006
MiBench 6 13 Open access 2001
Obfuscation Benchmarks 3 0 Open access 2016
35 applications in total, more than half are toy programs. Addition- 15
ally, all programs in Obfuscation Benchmarks fall under the toy 14 13

program category. Unlike MiBench and Obfuscation Benchmarks,
DEBRA avoids the inclusion of toy or synthetic programs. Instead,
we only integrate real-world programs of varying complexities to
provide a more robust and realistic evaluation landscape.

SPEC CINT2006 and MiBench are not specifically designed for
software protection research. As a consequence, programs provided
in these two benchmarks are raw and unobfuscated executables.
Users often have two options if they decide to reform the two
benchmarks for their software obfuscation and deobfuscation re-
lated evaluation. One option involves downloading the codebase
of a program from a trusted source, determining specific section(s)
for obfuscation, injecting obfuscation transformations within the
codebase and subsequently recompiling the program. Alternatively,
users can choose to lift a compiled program to an intermediate rep-
resentation (IR), applying obfuscation transformations at IR level
and then recompiling the program. However, both approaches can
lead to biases that heavily affect reproducibility, such as variations
in obfuscation settings and compiler configurations. On the other
hand, Obfuscation Benchmarks provides source code files instead
of executables. The majority of the source files contain only a main
function, encapsulating the entire program logic. Additionally, it
offers an automated obfuscation script that applies selected Tigress
obfuscation transformations to the main function. However, the re-
liance on toy programs limits its ability to provide a comprehensive
evaluation of deobfuscation methods. We address these limitations
by providing readily available executables that are pre-obfuscated
using real-world programs. In addition, we include manifests to doc-
ument the obfuscated functions and the source files they originate
from, the applied obfuscation techniques, and the corresponding
obfuscator for each sample in DEBRA.

DEBRA, MiBench, and Obfuscation Benchmarks are freely acces-
sible, whereas accessing SPEC CINT 2006 incurs an inevitable cost,
albeit with an educational discount. Programs in DEBRA are at their
recent versions at the time of writing this paper. On the other hand,
SPEC CINT2006, released in 2007 and retired in 2018, as well as
MiBench, which ceased major active maintenance since its release
in 2001, potentially lacking in reflecting the current state and trend
in modern programming development.

5.2 Deobfuscator Reevaluation

We reevaluate deobfuscation method proposed in [31] and Xyn-
tia [24] with DEBRA and report our findings in this section.

5.2.1 Deobfuscation Method Selection. The selection of consid-
ered deobfuscation methods is based on three factors. First, the
deobfuscation method must be publicly available and accessible

12
12

10

o

Number of Non-toy Programs
S oo

N

0

DEBRA SPEC CINT2006 MiBench Obfuscation

Benchmarks

Figure 6: Number of non-toy programs in each benchmark.

to users. Second, the deobfuscation method should come with a
working prototype and an adequate guide to facilitate correct usage
and thorough evaluation. Third, the allowed input for the proto-
type needs to include executables or subsidiaries such as execution
traces and source code files rather than being restricted to only
accepting modular entities such as functions, basic blocks or a set
of instructions.

Guided by the criteria, we select the deobfuscation method de-
veloped by Salwan et al. [31] and Xyntia [24] as the objects for our
evaluation. Since Salwan et al. [31] did not assign an official name
to their method in the paper, we will refer to it as “Deobfuscator
S” for ease of reference in subsequent context. Deobfuscator S is
designed to break virtualization obfuscation introduced by Tigress,
it takes a Tigress-virtualization-obfuscated executable as the input,
removes VM’s instructions and structures buried in it through taint
analysis, and returns a restored executable as output. A Python
script? implementing the entire process has been made available
on GitHub. Xyntia [24] is developed to break general obfuscation
schemes through a search-based, blackbox deobfuscation approach.
Xyntia exhibits the capability to process an input executable, syn-
thesizing simplified, yet semantically equivalent expressions for
individual basic blocks retrieved from execution traces based on I/O
sampling. The authors released relevant Bash and Python scripts>
to facilitate the deobfuscation process in an automated manner.
Technically speaking, Deobfuscator S can be characterized as a
symbolic execution based method, whereas Xyntia belongs to the
program synthesis category.

Zhttps://github.com/JonathanSalwan/Tigress_protection/blob/master/solve-vm.py
Shttps://github.com/binsec/xyntia/tree/2a9ff5/scripts

https://github.com/JonathanSalwan/Tigress_protection/blob/master/solve-vm.py
https://github.com/binsec/xyntia/tree/2a9ff5/scripts

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Table 4: A side-by-side comparison between obfuscated hash
functions within the custom dataset used in the initial eval-
uation of Deobfuscator S and obfuscated samples in DEBRA
subset generated by the Virtualization transformation of
Tigress. We present min, median, and max values for each
metric respective to the number of samples within each set.

Custom Dataset DEBRA Subset
(460 samples) (230 samples)
[Min, Max] Med [Min, Max] Med
Functions # [6, 46] 9 [132, 23,693] 1339
Instructions # [491, 7,364] 1145 [9,571, 1,468,035] 83,741.5
Size (KB) [13, 77] 18 [305,76,049] 2,608.5

5.2.2 Experiment Settings. We test Deobfuscator S with a subset
of DEBRA totaling 230 samples generated by the Virtualize transfor-
mation of Tigress and Xyntia with the complete set of samples in
DEBRA respectively. Despite the variance in options and values for
using Tigress to generate samples in DEBRA as opposed to those in
the custom datasets used in the initial evaluation of Deobfuscator S
and Xyntia, our primary focus is to measure the competence of such
deobfuscators, whose performance in real-world settings remains
unknown, in handling obfuscated samples derived from real-world
programs rather than repeatedly analyzing their capabilities across
varying protection settings.

As a comparison, Deobfuscator S’s original experiments were
conducted using a custom dataset of 920 obfuscated samples. Each
of those obfuscated samples was generated with the Virtualize trans-
formation of Tigress configured with 46 distinct values across 13
options. These samples were derived from two sources: 10 hash func-
tion implementations and 10 programs from the Tigress Challenge.
Deobfuscator S was able to restore all of the 920 obfuscated samples
to their functionally equivalent versions prior to obfuscation as
reported by the authors. Xyntia unveils obfuscated code, irrelevant
to the applied obfuscation techniques, by synthesizing syntactically
simplified expressions that mirror the I/O behaviors of the original
code. Its efficacy was mainly tested with two expression datasets
containing Boolean, Arithmetic, and Mixed Boolean-Arithmetic
expressions with up to 5 variables. Xyntia achieved an average
synthesis rate of 96.21% in delivering qualified alternatives across
multiple experimental runs.

Table 4 presents a side-by-side comparison between the obfus-
cated hash function samples from the custom dataset used in the
original evaluation of Deobfuscator S (metrics are calculated based
on the obfuscated hash function samples because of the unavailabil-
ity of the Tigress Challenge samples, but we anticipate the metrics
would be very close to the real situation based on the open data
released in their paper) and those in DEBRA subset. We can observe
that substantial differences exist in each metric, most notably in the
maximum number of instructions where the difference reaches 200
times. A similar trend is also observed in the number of functions
and sizes where the maximum number of functions and the maxi-
mum value of size in the custom dataset are not even close to half of

Zheyun Feng and Dongpeng Xu

Table 5: The amount of instructions that Deobfuscator S can
process in each testbed program.

Testbed Total Processed Percentage
bash 192,134 32 0.017%
chmod 17,431 41 0.230%
cp 24,396 40 0.164%
curl 28,653 53 0.185%
find 56,696 33 0.058%
gce 49,098 100 0.204%
grep 42,076 43 0.102%
gzip 21,141 213 1.008%
httpd 125,606 53 0.042%
Is 22,719 40 0.176%
nano 64,750 256 0.395%
OpenSSL 1,140,830 172 0.015%
QEMU 1,446,341 2560 0.177%
SQLite 322,458 34 0.011%
tar 86,712 28 0.032%

their counterparts in DEBRA subset. This reveals how different real-
world programs are from toy programs in terms of complexities
especially when obfuscations are applied.

5.2.3 Result Analysis. We ran Deobfuscator S on DEBRA subset and
the results are reported in Table 5. We reported the quantity of
instructions that could be processed by Deobfuscator S instead
of the number of samples being successfully restored by it. The
reason is that Deobfuscator S was not able to deobfuscate any of
the samples in DEBRA subset and crashed right away for nearly
all samples. The median number of instructions Deobfuscator S
managed to process is 43 instructions per sample, with the highest
2560 instructions for QEMU samples and the lowest 28 instructions
for tar samples. In terms of the processing rate, gzip samples top
with just over 1% whereas the processing rate on SQLite samples is
as low as 0.011%.

Deobfuscator S. After carefully looking into the implemen-
tations, we identify two major limitations that contribute to the
undesired outcomes. First, Deobfuscator S struggles with dynami-
cally linked executables because it relies on a pre-defined list (18
functions) for managing transfers to external functions. For exter-
nal functions within the list, Deobfuscator S sets the register rip to
the function’s return address, safely bypassing the call. However,
an external function outside the list leaves Deobfuscator S at a
loss, triggering an emulation error that mistakenly zeroes out the
register rip. The emulation is disrupted immediately and leads to
the crash. Second, Deobfuscator S explicitly searches for a set of
hard-coded entrance and exit points within the codebase to start
analysis. The entrance point is indicated by the strtoul function, and
the function’s return value serves as the source of Deobfuscator
S’s taint analysis. The printf function acts as the indicator of an
exit to terminate the analysis and the function’s second parameter
(e.g., sink in printf("%d", sink);) serves as the sink of Deobfuscator

DEBRA

35678: cmp DWORD PTR [rip+0x304179], 0x0
3397f8 <pretty_print_mode >

35694: call 36b00 <pretty_print_loop >

356d7: mov DWORD PTR [rip+0x304117], 0x0
3397f8 <pretty_print_mode>

Figure 7: Snippet from the disassembled main function of
the bash program. Lines containing the substring "ret" are
erroneously identified as the locations of ret instruction by
Xyntia.

S’s taint analysis. In the absence of either function, Deobfusca-
tor S is incapable of performing its taint analysis. Moreover, we
discovered that Deobfuscator S requires an exact textual match
between the name of an external function and those in the pre-
defined list. For instance, Deobfuscator S differentiates between
calls to function __printf check and printf, although both originate
from the function printf in the source code. It’s worth noting that
such strict conditions are rarely true in real-world scenarios. As
a result, Deobfuscator S stumbled with the real-world samples in
DEBRA.

Interestingly, Kochberger et al. [20] noticed that the presence
of the function strtoul and the function printf are required as well
when evaluating Deobfuscator S, referred to in their work as Tigress
DeObf with a custom dataset primarily consisting of toy programs.
Deobfuscator S started to work as expected and managed to restore
most of the samples after Kochberger et al. [20] patched their sam-
ples derived from toy programs to include the strtoul and the print
functions within the main function. Upon comparing the datasets
used for evaluation in Salwan et al. [31] and Kochberger et al. [20],
we find significant similarities. Kochberger et al. [20] selected hash
function implementations from Obfuscation Benchmarks [3], and
generated four distinct sets of obfuscated samples from them. The
datasets in both cases heavily consist of hash function implemen-
tations. These implementations share the same naive structures,
with a main function and another custom function containing the
hash algorithm. Additionally, there are no features that can be
commonly found in real-world programs such as complex data
structures included in these implementations. The similar natures
of these datasets allow Deobfuscator S to achieve excellent per-
formance in both cases, and the hand-crafted rules are enough to
cover all situations in these samples so that other limitations we
discovered were not encountered and reported in their work [20].

Xyntia. Xyntia was evaluated across all 1,917 samples in our
benchmark with the proven optimal search strategy, Iterated Local
Search, synthesis timeout, 60s, and objective function, logarith to
maximize the efficacy. However, Xyntia was limited to processing
205 samples derived from 4/15 of the testbed programs (chmod, cp,
grep, and Is). The failures can be attributed to its tracing engine.
Primarily, the engine uses Python’s in keyword to search for the ret
instruction within the main function of an executable to define the
boundaries of tracing. This strategy is flawed in instances where

SURE ’25, October 13-17, 2025, Taipei, Taiwan

100.0%100.0%

100 95.05% . Sampling Rate
92.42% Synthesis Rate
80
E\O, 604
%]
0]
-~
©
o
404
20 15.6%
11.24%
Basic Expression Set Intricate Expression Set DEBRA

Figure 8: Comparing average sampling and synthesis rates
Xyntia achieved on DEBRA with those reported in the origi-
nal evaluation.

the ret instruction is absent, as observed in the main function of
the nano program, or when false positives occur, as depicted in
Figure 7. Under both scenarios, the tracing engine shuts itself down.
Additionally, even when the ret instruction’s location is correctly
captured, the engine’s inadequate handling of recursions within
external functions can trap itself forever.

In Figure 8, we present the average sampling and synthesis rates
Xyntia achieved on DEBRA versus those reported in the original eval-
uation. The sampling rate represents the proportion of retrieved
basic blocks for which Xyntia learned I/O behaviors, while the syn-
thesis rate reflects the percentage of basic blocks from the pool of
sampled blocks for which Xyntia synthesized semantically equiva-
lent, yet simplified expressions. On average, Xyntia sampled 15.6%
of the retrieved basic blocks per program in DEBRA. However, none
of the target basic blocks containing obfuscated code segments
were in that category. A closer examination of the basic blocks sam-
pled by Xyntia revealed that a non-negligible portion of them were
trivial cases with one-to-one I/O behaviors. Xyntia struggled with
complex basic blocks due to the internal SMT expression builder’s
limitations in efficiently handling such blocks. However, such basic
blocks are common in real-world scenarios especially when obfus-
cation is applied. On the other hand, Xyntia achieved an average
synthesis rate of 11.24%, a notable drop from over 90% synthesis
rate reported in the original evaluation. This discrepancy could
stem from the complexity of our samples, which include a greater
number of I/O variables compared to the maximum of 5 variables
considered in the initial evaluation.

The evaluation results demonstrate that DEBRA can simulate
real-world deobfuscation tasks and thus expose the problems de-
rived from a real-world point of view. Please note that the evaluation
results should not be interpreted as deficiencies of the evaluated
tools, because deobfuscation technique design is often inherently a
target and obfuscation technique specific task rather than a generic
problem. The observed failures should be attributed to mismatches
in context between the design expectations of the evaluated tools

SURE ’25, October 13-17, 2025, Taipei, Taiwan

and those in our experiments. Therefore, DEBRA’s contribution is
not meant to challenge the validity of existing deobfuscation tools,
but to provide a ground for comparative evaluation and to moti-
vate future deobfuscation techniques to better handle real-world
obfuscated programs.

6 Limitation

We selectively incorporate obfuscation techniques and obfuscators
to construct DEBRA based on their frequency of occurrence in re-
cent works. While we do not exhaust obfuscation techniques and
obfuscators, DEBRA is designed to be extensible. Users can freely
augment it based on their needs as our source code analyzer pin-
points candidate locations for obfuscation. We consider expanding
DEBRA is necessary and as part of our future work.

Another unsupported aspect is multi-layer obfuscation, which
involves one or several obfuscation techniques applied once or mul-
tiple times to a program in an attacker-agnostic order. Obfuscation
techniques are often found to be deployed in combination to en-
hance the holistic resilience against reverse engineering in common
practice. The synergy effects of different obfuscation techniques
have been validated in multiple works [32, 39, 42]. Also, the order
of obfuscation proves to be a key factor to yield optimal obfuscation
strength in Wang et al. [39]. However, we are not aware of widely
adopted, well-established solutions to systematically break layered
obfuscation. Therefore, we consider the investigation of how to
build a practical layered obfuscation upon DEBRA as part of our
future work as well.

While we seek to mirror real-world practices as closely as pos-
sible, the current obfuscation target searching risks overlooking
potential candidates. As a promising direction moving forward, we
will incorporate more static features such as Halstead Complexity
Measures and Cyclomatic Complexity to augment the source code
analyzer.

7 Related Work

High-quality benchmark datasets are invaluable yet scarce resources
for deobfuscation technique evaluations, malware datasets serve
as an ideal option for such evaluations. Malware is rich with real-
world instances of sophisticated obfuscation techniques injected by
attackers to evade detection [45]. Notable malware datasets such
as Drebin [5] and MalGenome [48] include a wide array of mal-
ware captured in the wild, are highly regarded within the malware
research community. However, the lack of ground truth concern-
ing the precise obfuscation locations undermines their usability as
standardized evaluation targets for deobfuscation techniques.
Zhao et al. [47] constructed a large-scale obfuscation dataset to
evaluate their research work on obfuscation scheme prediction. The
dataset includes over 240,000 obfuscated samples by obfuscating
gec version 7.4 and GNU Tookits without explicit specifications
such as versions and programs with a selection of 8 obfuscation
transformations from two open-source obfuscators, O-LLVM and
Tigress. However, the authors have not made the dataset publicly
available, and certain details concerning the generation process are
omitted, which poses a limitation due to a lack of standardization.
Moreover, all obfuscated samples are further processed to facilitate

Zheyun Feng and Dongpeng Xu

their specific evaluation purposes, rendering the dataset unsuitable
for generic deobfuscation technique evaluations.

Kochberger et al. [20] obfuscated hash function implementations
collected from Obfuscation Benchmarks to build datasets for evalu-
ating four deobfuscation methods specializing in breaking virtual-
ization. While the complete datasets are not made publicly available,
the authors detailed the process of generating the datasets. How-
ever, the components of the datasets are limited to toy programs.
As a result, their datasets cannot serve as a standard benchmark
for generic deobfuscation technique evaluations.

8 Conclusion

We identify the limitations in current deobfuscation method eval-
uation patterns and point out the long-standing deficiency of a
comprehensive and standardized benchmark to support systematic
and impartial evaluation of deobfuscation methods. In this paper,
we present DEBRA, a real-world benchmark built to address the cur-
rent limitations. We applied a selection of obfuscation techniques
to function-level targets reported by a metric-driven source code
analyzer within 15 real-world programs to generate the benchmark.
DEBRA is a publicly available set and we hope our work boosts both
the advancement and comparative evaluation of deobfuscation
methods.

Acknowledgments

We sincerely thank our shepherd for the valuable guidance during
the revision process and the anonymous reviewers for their con-
structive feedback during the review process. This research was
supported by NSF grants 2211905, 2022279, and 2154606.

References

[1] [n.d.]. Code Virtualizer. https://www.oreans.com/CodeVirtualizer.php.

[2] [n.d.]. gooMBA. https://github.com/HexRaysSA/goomba.

[3] [n.d.]. Obfuscation Benchmarks. https://github.com/tum-i4/obfuscation-
benchmarks.

[4] [n.d.]. The Tigress C Obfuscator. https://tigress.wtf.

[5] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23-26. doi:10.14722/ndss.2014.23247

[6] Alessandro Bacci, Alberto Bartoli, Fabio Martinelli, Eric Medvet, Francesco Mer-
caldo, Corrado Aaron Visaggio, et al. 2018. Impact of Code Obfuscation on
Android Malware Detection based on Static and Dynamic Analysis.. In ICISSP.
379-385. doi:10.5220/0006642503790385

[7] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code obfuscation against symbolic execution attacks. In
Proceedings of the 32nd Annual Conference on Computer Security Applications.
189-200. doi:10.1145/2991079.2991114

[8] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. 2017. Predict-
ing the Resilience of Obfuscated Code Against Symbolic Execution Attacks via
Machine Learning. In 26th USENIX Security Symposium (USENIX Security 17).

[9] Sebastian Banescu and Alexander Pretschner. 2018. A tutorial on software
obfuscation. Advances in Computers 108 (2018), 283-353. doi:10.1016/bs.adcom.2
017.09.004

[10] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In 26th USENIX Security
Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 643
659. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/blazytko

[11] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of

obfuscating transformations. Technical Report. Department of Computer Science,

The University of Auckland, New Zealand.

Ninon Eyrolles, Louis Goubin, and Marion Videau. 2016. Defeating mba-based

obfuscation. In Proceedings of the 2016 ACM Workshop on Software PROtection.

27-38. d0i:10.1145/2995306.2995308

Yoann Guillot and Alexandre Gazet. 2010. Automatic binary deobfuscation.

Journal in computer virology 6, 3 (2010), 261-276. doi:10.1007/s11416-009-0126-4

[12

[13

https://www.oreans.com/CodeVirtualizer.php
https://github.com/HexRaysSA/goomba
https://github.com/tum-i4/obfuscation-benchmarks
https://github.com/tum-i4/obfuscation-benchmarks
https://tigress.wtf
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.5220/0006642503790385
https://doi.org/10.1145/2991079.2991114
https://doi.org/10.1016/bs.adcom.2017.09.004
https://doi.org/10.1016/bs.adcom.2017.09.004
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/blazytko
https://doi.org/10.1145/2995306.2995308
https://doi.org/10.1007/s11416-009-0126-4

DEBRA

[14]

[15]

[16

[17]

[18]

[19

[20]

[21]

[22

[23

[24]

[26

[27]

[28

[29]

[30

[31

[32]

[33]

[34]

[35]

[36

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4 (Cat. No. 01EX538). IEEE, 3-14.
doi:10.1109/WWC.2001.990739

John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1-17. doi:10.1145/1186736.1186737
Harshvardhan P Joshi, Aravindhan Dhanasekaran, and Rudra Dutta. 2015. Trad-
ing off a vulnerability: does software obfuscation increase the risk of rop attacks.
Journal of Cyber Security and Mobility (2015), 305-324. doi:10.13052/jcsm2245-
1439.444

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015. Obfuscator-
LLVM - Software Protection for the Masses. In Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, SPRO’15, Firenze, Italy, May 19th,
2015. doi:10.1109/SPRO.2015.10

Zeliang Kan, Haoyu Wang, Lei Wu, Yao Guo, and Daniel Xiapu Luo. 2019.
Automated deobfuscation of Android native binary code. arXiv preprint
arXiv:1907.06828 (2019). doi:10.48550/arXiv.1907.06828

Patrick Kochberger, Sebastian Schrittwieser, Bart Coppens, and Bjorn De Sutter.
2023. Evaluation Methodologies in Software Protection Research. arXiv preprint
arXiv:2307.07300 (2023). doi:10.48550/arXiv.2307.07300

Patrick Kochberger, Sebastian Schrittwieser, Stefan Schweighofer, Peter Kiese-
berg, and Edgar Weippl. 2021. Sok: Automatic deobfuscation of virtualization-
protected applications. In Proceedings of the 16th International Conference on
Availability, Reliability and Security. 1-15. doi:10.1145/3465481.3465772
Minerva Labs. 2020. Egregor Ransomware — An In-Depth Analysis. https:
//minerva-labs.com/blog/egregor-ransomware-an-in-depth-analysis/.

Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing Li, and Dongpeng Xu.
2021. {MBA-Blast}: Unveiling and Simplifying Mixed {Boolean-Arithmetic}
Obfuscation. In 30th USENIX Security Symposium (USENIX Security 21). 1701—
1718.

Haoyu Ma, Chunfu Jia, Shijia Li, Wantong Zheng, and Dinghao Wu. 2019. Xmark:
dynamic software watermarking using Collatz conjecture. IEEE Transactions on
Information Forensics and Security 14, 11 (2019), 2859-2874.

Grégoire Menguy, Sébastien Bardin, Richard Bonichon, and Cauim de Souza
Lima. 2021. Search-based local black-box deobfuscation: understand, improve
and mitigate. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2513-2525. doi:10.1145/3460120.3485250

Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. Loop: Logic-oriented
opaque predicate detection in obfuscated binary code. In Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security. 757-768.
doi:10.1145/2810103.2813617

Camille Mougey and Francis Gabriel. 2014. DRM obfuscation versus auxiliary
attacks. In Recon conference.

Philip OKane, Sakir Sezer, and Kieran McLaughlin. 2011. Obfuscation: The Hidden
Malware. IEEE Security and Privacy (2011). doi:10.1109/MSP.2011.98

Chengbin Pang, Tiantai Zhang, Xuelan Xu, Linzhang Wang, and Bing Mao. 2023.
OCFIL: Make Function Entry Identification Hard Again. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis. 804-815.
doi:10.1145/3597926.3598097

Rolf Rolles. 2009. Unpacking virtualization obfuscators. In 3rd USENLX Workshop
on Offensive Technologies.(WOOT).

Kevin A Roundy and Barton P Miller. 2013. Binary-code obfuscations in prevalent
packer tools. ACM Computing Surveys (CSUR) 46, 1 (2013), 1-32. doi:10.1145/25
22968.2522972

Jonathan Salwan, Sébastien Bardin, and Marie-Laure Potet. 2018. Symbolic deob-
fuscation: From virtualized code back to the original. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
372-392. doi:10.1007/978-3-319-93411-2_17

Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius
Basler, Thorsten Holz, and Ali Abbasi. 2022. Loki: Hardening code obfuscation
against automated attacks. In 31st USENIX Security Symposium (USENIX Security
22). 3055-3073.

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-
dovnik, and Edgar Weippl. 2016. Protecting software through obfuscation: Can
it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 49,
1(2016), 1-37. doi:10.1145/2886012

Vit Sembera, Masarah Paquet-Clouston, Sebastian Garcia, and Maria Jose
Erquiaga. 2021. Cybercrime specialization: An exposé of a malicious Android
Obfuscation-as-a-Service. In 2021 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). doi:10.1109/EuroSPW54576.2021.00029
Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Automatic
Reverse Engineering of Malware Emulators. In Proceedings of the 30th IEEE
Symposium on Security and Privacy (S&P’09). doi:10.1109/SP.2009.27

Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae, Philippe Elbaz-Vincent, and
Thanh-Ha Le. 2019. Defeating opaque predicates statically through machine
learning and binary analysis. In Proceedings of the 3rd ACM Workshop on Software

[37

[38

[39

[41

[42

[43

S
&

[45

[46

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Protection. 3-14. doi:10.1145/3338503.3357719

Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Herbert Bos, and Cristiano
Giuffrida. 2019. SoK: Benchmarking flaws in systems security. In 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 310-325. doi:10.1
109/EuroSP.2019.00031

Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. 2000. Software
tamper resistance: Obstructing static analysis of programs. (2000).

Huaijin Wang, Shuai Wang, Dongpeng Xu, Xiangyu Zhang, and Xiao Liu. 2020.
Generating effective software obfuscation sequences with reinforcement learning.
IEEE Transactions on Dependable and Secure Computing 19, 3 (2020), 1900-1917.
doi:10.1109/TDSC.2020.3041655

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and
Yang Tang. 2023. A brief overview of ChatGPT: The history, status quo and
potential future development. IEEE/CAA Journal of Automatica Sinica 10, 5
(2023), 1122-1136. do0i:10.1109/JAS.2023.123618

Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A verifiable
approach to partially-virtualized binary code simplification. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
442-458. doi:10.1145/3243734.3243827

Hui Xu, Yangfan Zhou, Jiang Ming, and Michael Lyu. 2020. Layered obfuscation: a
taxonomy of software obfuscation techniques for layered security. Cybersecurity
3,1(2020), 1-18. doi:10.1186/s42400-020-00049-3

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
Generic Approach to Automatic Deobfuscation of Executable Code. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (S&P’15). doi:10.1109/SP.201
5.47

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and
understanding bugs in C compilers. In Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation. 283-294.
doi:10.1145/1993316.1993532

Ilsun You and Kangbin Yim. 2010. Malware obfuscation techniques: A brief survey.
In 2010 International conference on broadband, wireless computing, communication
and applications. IEEE, 297-300. doi:10.1109/BWCCA.2010.85

Naiqian Zhang, Daroc Alden, Dongpeng Xu, Shuai Wang, Trent Jaeger, and
Wheeler Ruml. 2023. No Free Lunch: On the Increased Code Reuse Attack
Surface of Obfuscated Programs. In 2023 53rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 313-326. doi:10.1
109/DSN58367.2023.00039

Yujie Zhao, Zhanyong Tang, Guixin Ye, Dongxu Peng, Dingyi Fang, Xiaojiang
Chen, and Zheng Wang. 2020. Semantics-aware obfuscation scheme prediction
for binary. Computers & Security 99 (2020), 102072. doi:10.1016/j.cose.2020.102072
Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization
and evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95-109.
doi:10.1109/SP.2012.16

https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.13052/jcsm2245-1439.444
https://doi.org/10.13052/jcsm2245-1439.444
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.48550/arXiv.1907.06828
https://doi.org/10.48550/arXiv.2307.07300
https://doi.org/10.1145/3465481.3465772
https://minerva-labs.com/blog/egregor-ransomware-an-in-depth-analysis/
https://minerva-labs.com/blog/egregor-ransomware-an-in-depth-analysis/
https://doi.org/10.1145/3460120.3485250
https://doi.org/10.1145/2810103.2813617
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1145/3597926.3598097
https://doi.org/10.1145/2522968.2522972
https://doi.org/10.1145/2522968.2522972
https://doi.org/10.1007/978-3-319-93411-2_17
https://doi.org/10.1145/2886012
https://doi.org/10.1109/EuroSPW54576.2021.00029
https://doi.org/10.1109/SP.2009.27
https://doi.org/10.1145/3338503.3357719
https://doi.org/10.1109/EuroSP.2019.00031
https://doi.org/10.1109/EuroSP.2019.00031
https://doi.org/10.1109/TDSC.2020.3041655
https://doi.org/10.1109/JAS.2023.123618
https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1186/s42400-020-00049-3
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1109/SP.2015.47
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1109/DSN58367.2023.00039
https://doi.org/10.1109/DSN58367.2023.00039
https://doi.org/10.1016/j.cose.2020.102072
https://doi.org/10.1109/SP.2012.16

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Software Obfuscation and Deobfuscation
	2.2 Motivation

	3 Method
	3.1 Real-world Testbed
	3.2 Pinpoint Obfuscation
	3.3 Standardization

	4 Implementation
	4.1 Source Code Analyzer
	4.2 Generation of DEBRA

	5 Experiment and Evaluation
	5.1 Peer Benchmarks
	5.2 Deobfuscator Reevaluation

	6 Limitation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

