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Abstract

Recovering semantic information from binary code is a fundamen-
tal challenge in reverse engineering, especially when source-level
information is unavailable. We aim to analyze the types and roles of
structural elements from the binary observed in the compiled pro-
gram, focusing on their contextual usage patterns and associations
to other members.We refer to such semantic aspects as structural
semantics , meaning that cooccurring patterns of jointly updated
structure members reveal the functional roles that can be inferred
from their coupling, throughout this paper. Recent approaches have
applied graph neural networks (GNNs) to data-flow graphs (DFGs)
for variable type inference, but most rely on a single model architec-
ture, such as the relational graph convolutional network (R-GCN).
While effective, such models may overlook alternative patterns of
structure member behavior. In this paper, we investigate the effec-
tiveness of three alternative GNN architectures gated graph neural
networks (GGNN), graph attention networks (GAT), and standard
graph convolutional networks (GCN) in capturing structural seman-
tics from binary-level data-flow graphs. We evaluate these models
on real-world binaries compiled at multiple optimization levels,
measuring their ability to infer semantic properties of structure
members. Our results show that these architectures capture com-
plementary aspects of structural semantics. GGNN is effective at
modeling long-range dependencies, GAT suppresses irrelevant con-
nections, and GCN offers computational simplicity. Different model
architectures emphasize distinct aspects of structural semantics,
capturing complementary patterns of how structure members are
accessed together in memory. This demonstrates that architectural
diversity provides richer perspectives for semantic inference in
binary analysis.
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1 Introduction

Most software is developed using high-level programming lan-
guages and then compiled into binary format for deployment and
execution on target platforms. As a result, what remains is a se-
quence of binary instructions that operate directly on hardware
resources such as CPU registers, memory addresses, and stack
frames. Given this loss of semantic information, it is extremely
difficult to recover the original purpose or logical structure of a
program solely by observing low-level memory state changes. Fur-
thermore, this challenge is exacerbated by factors such as compiler
optimizations and the diversity of hardware architectures [20]. Al-
though a program’s execution can, in principle, be interpreted as a
time-series of state transitions across registers, caches, and memory
cells, such information alone is insufficient to reconstruct high-level
semantics accurately. This limitation becomes especially apparent
when attempting to understand how different parts of a program
interact, or what roles particular data structures and variables play
in a larger computational context.

Simply tracing low-level state transitions poses specific problems.
In particular, it is inadequate for recovering high-level meanings re-
lated to interprocedural interactions and variable roles. The need to
recover such structural semantics arises in a wide range of domains,
including proprietary software auditing, firmware verification, and
incident response. Specifically, in the fields of malware analysis [4]
and vulnerability discovery [13], analysts are tasked with analyz-
ing binary executables to understand malicious behavior, identify
security flaws, and reconstruct the functionality of stripped or ob-
fuscated code. In such contexts, source code is often unavailable
by design - either because the software is distributed only in com-
piled form, or because the original code has been intentionally
obfuscated.

To address this challenge, reverse-engineering tools such as
decompilers aim to reconstruct approximate source-level repre-
sentations from binaries. However, before high-level code can be
recovered, critical intermediate tasks must be performed, such as
identifying variable types, detecting struct layouts, and grouping
related memory elements. These low-level reconstructions serve as
foundational indicators for subsequent analyses. As a result, recent
research has increasingly focused on techniques for recovering
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lost semantic information—not only variable types and structure
layouts, but also variable names and usage roles. For example, struc-
ture layout recovery methods include rule-based and heuristic ap-
proaches [14], constraint-solving techniques [10] [21], and machine
learning-based methods [2] [19] [12] [16].

Recent tools and studies, including Ghidra and TYGR (TYpe in-
ference on stripped binaries using GRaph neural networks) [22],
employ DFG as an intermediate representation for variable recovery.
TYGR, for instance, applies a GNN over a directed DFG that is aug-
mented with separate reverse-edge relations (i.e., backward edges
are treated as distinct edge types) to assign compact embeddings to
each node, allowing type prediction without manual analysis. Al-
though originally designed for type classification, these embeddings
implicitly capture broader semantic cues, such as pointer-usage
patterns, aliasing, and latent state transitions.

This work focuses on the impact of model choice when applying
GNNs to DFGs for data structure recovery. While we do not address
explicit state-machine inference in this paper, we interpret infor-
mation propagation on the DFG as a process that maps localized
updates of program state. In this sense, a GNN can be viewed as
approximating latent state transitions through local dependencies,
as conceptually illustrated in Figure 1. The empirical validation of
this perspective is left for future work; here, we focus on coeffi-
cient analysis and cross-model comparison. To this end, our method
applies multiple GNN models, including RGCN [17], GGNN [11],
GCN [9], and GAT [18], to DFGs to infer struct members based on
instruction dependencies and memory access behavior. We perform
comparative evaluations across these architectures to assess their
impact on inference accuracy and reconstruction performance. Ex-
periments are conducted on real-world binaries stripped of debug
information, with evaluation focusing on member prediction ac-
curacy, correctness of inferred structural transitions, and analysis
of misprediction patterns. Our findings contribute to advancing
binary analysis through internal state modeling and support the
development of high-precision tools for decompilation, protocol
reverse engineering, security analysis, and firmware inspection.

2 Background and Related Work

2.1 Recent Software Development Status

Program execution can be understood as a time-series of state
changes occurring in various forms of memory and storage sys-
tems, including CPU registers, caches, and main memory (RAM). At
a concrete level, program behavior progresses through the sequen-
tial execution of instructions, each of which updates the machine
state by writing to registers or modifying memory contents. Conse-
quently, capturing and analyzing the temporal evolution of memory
values has emerged as a promising direction for inferring the un-
derlying computations and logical behavior of binary programs.
Recent studies have investigated fine-grained execution traces at
the hardware level to recover control flow and memory access
patterns, as well as speculative or transient states in memory to
infer execution semantics. These memory-centric approaches have
shown applicability in reverse engineering, program decompilation,
and even detecting malicious behaviors in stripped binaries using
large language models (LLMs) [19].
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Beyond mere memory access tracking, the interpretation of vari-
able grouping plays a critical role in understanding program seman-
tics. For instance, when a structure contains an int-type member
variable, it may often serve as a counter or state holder. If it contains
only an array of strings, its design as a struct may be unnecessary.
However, when a string represents meaningful information—such
as a file name—and is linked with other state information (e.g.,
file status: open, modified), grouping them as a struct becomes a
natural design choice. By co-locating related variables as struct
members, it becomes possible to centrally manage the operational
state of an object and explicitly represent state transitions. This
pattern is also observed in counters. For example, a monotonically
increasing int member may track retry counts in communication
processes. When exceeding a certain threshold, this value may trig-
ger a transition from connecting to failed In such designs, counters
are rarely handled in isolation; instead, they are integrated into
data structures alongside relevant identifiers, such as socket descrip-
tors. Thus, in binary-level analysis, understanding how variables
are grouped—and not just their individual types—is essential for
recovering structural program semantics.

In recent years, while Al-driven code generation has seen re-
markable progress, our capacity—whether manual or automated—to
comprehend generated code remains limited. This limitation is es-
pecially pronounced at the binary level. During the compilation
process, much of the source-level abstraction is irreversibly lost.
High-level programming languages are designed to express com-
plex logic, abstract control structures, and programmer intent in a
semantically rich and human-readable manner. However, during
compilation to machine code, essential contextual elements such
as variable names, data types, structural relationships, and control
abstractions are frequently discarded or flattened [1].

To address these challenges, the field of reverse engineering
has gained importance. It aims to reconstruct meaningful repre-
sentations—such as control-flow graphs, variable structures, and
semantic groupings—from binary artifacts. This often requires a
combination of static and dynamic analysis, and more recently, ma-
chine learning-based techniques have been explored to bridge the
semantic gap between low-level binary instructions and high-level
meaning. The ultimate goal is to support tasks such as vulnerabil-
ity triage, binary lifting, automated decompilation, and program
similarity analysis by recovering sufficient semantic insight from
compiled binaries.

Binary type analysis has traditionally relied on heuristic and
constraint-based reconstruction techniques. Tools such as Ghidra [14]
employ heuristic-based decompilation methods, utilizing empiri-
cally derived patterns and rule-based matching to infer data types
from compiled code. While partially effective, these methods often
operate independently of formal instruction set architectures and
instead depend on manually curated patterns derived from human
expertise. As a result, such approaches may produce inaccurate or
inconsistent outcomes, especially when analyzing highly optimized
or obfuscated binaries.

2.2 Binary analysis-based recovery methods

Lee et al.[10] proposed TIE, a binary type inference method based
on constraint solving derived from instruction set specifications.
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Figure 1: Modeling state transitions of disjoint subgraphs on a DFG

Technique Input Struct  Struct Ptrs  Struct Members Structure grouping Multi-arch
IDA [7] Binary X X X X v
Ghidra [14] Binary X X X X v
TIE [10] Binary v v v v X
RETYPD [15] Binary v v v 4 X
OSPREY [21] Binary v v v 4 X
DEBIN [6] Disassembly v X X X X
STATEFORMER [16] Runtime Values v v X X v
DIRTY [2] Decompilation v v X X X
TYGR [22] Binary v v v X v

Table 1: Comparison of existing type-recovery techniques (dynamic-trace-based approaches excluded)

This approach analyzes how register and memory operations in
binary code relate to variables and expressions used in the original
source code, and generates type constraints based on usage patterns.
For example, if a register is used in a signed division, a constraint
is derived indicating that the register must at least be of a signed
type. By collecting such constraints from across the entire code and
solving them through a constraint resolution algorithm, TIE enables
amore principled and flexible form of type recovery without relying
on empirical heuristics. However, constraint-based methods like
TIE face limitations in narrowing down candidate types when the
inclusion relationships among types are insufficiently captured,
making it difficult to deduce a single concrete type.

To address the reliance on manually crafted rules in traditional
binary type inference methods, He et al.[6] proposed DEBIN, a prob-
abilistic model that captures the relationship between binary code
and the original source code. DEBIN represents the correlation be-
tween instruction patterns in binary code and their corresponding
variables or expressions using a conditional random field, thereby
enabling type inference. This approach eliminates the need for

manually defined rules and instead infers types based on learned
statistical relationships.

Furthermore, Chen et al.[2] highlighted two key limitations:
constraint-based methods such as TIE are incapable of inferring
variable names and type names, while machine learning approaches
like DEBIN, which rely on instruction sequences, often lack syn-
tactic consistency. To overcome both issues, they proposed DIRTY,
a method designed to recover types and variable names simulta-
neously. DIRTY is structured to ensure consistency in both syntax
and semantics, enabling more practical and accurate reconstruction
of program information.

The studies discussed so far still suffer from several limitations,
including incomplete recovery of fine-grained structure types and
a lack of support for a wide range of architectures. In the context
of variable-type recovery and the fine-grained reconstruction of
structure types, the data-flow graph (DFG) has drawn particular
attention. Because a DFG records where each value is produced,
propagated, and consumed, it retains information that hints at data
types in the most unadulterated form.
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This section clarifies the mutual relationship between the data-
flow graph (DFG) and the control-flow graph (CFG) that is traversed
while the DFG is being generated.

A CFG partitions binary code into basic blocks and represents
control-flow transfers between them as directed edges. It captures
inter-function calls and depicts the program’s possible execution
paths, making it well suited for reasoning about call relationships,
branch reachability, and loop behavior. Because the CFG concen-
trates on control aspects, however, it is not specialized for detailing
how data are exchanged between registers and memory or how
values are transformed and propagated—that role is filled by the
DFG.

A DFG is defined as a graph structure in which nodes represent
data stored in registers or at memory offsets, and directed edges
denote operations—such as arithmetic instructions—performed on
those nodes [8]. This representation models how the state of each
node (corresponding to a finite storage location) evolves over suc-
cessive operations, and it is commonly expressed in Static Sin-
gle Assignment (SSA) form in many analysis tools. By compos-
ing these node—operation relationships across multiple layers, one
can reconstruct the sequence of transformations that the data un-
dergoes—that is, its overall computational behavior. Furthermore,
by examining properties of a node after its state has been up-
dated—such as bit width or signedness—it becomes possible to
infer higher-level information like the variable’s type. Many de-
compilers, including Ghidra, thus adopt the DFG as a foundational
representation for variable-type recovery.

Performing static analysis directly on a DFG is challenging: com-
plex branches, interprocedural dependencies, and the computa-
tional cost of large code bases make the task difficult for both
humans and machines. To mitigate these issues, we focus on TYGR
[22], which embeds the structural dependencies of a DFG with a
GNN, allowing variable types to be recovered more easily.

Zhu et al.[22] proposed TYGR, a GNN-based type inference
method, to address two shortcomings of many prior works: the lack
of support for fine-grained type recovery of struct members, and
the limited architecture compatibility of existing tools and methods.
TYGR infers variable types in the original source code by analyz-
ing register value operations and dependencies in the Data Flow
Graph (DFG). It embeds these register relationships into feature
vectors, allowing the model to predict types based on the resulting
embedded representations.

Although recent work has begun to address these shortcomings,
challenges specific to structures remain unresolved. The follow-
ing discussion therefore concentrates on the relationship between
structure reconstruction and multi-architecture support.

Table 1 summarizes representative type-recovery techniques
from five perspectives: direct reconstruction of structures, analysis
of structure pointers (i.e., mutual references), inference of member
types, higher-level grouping of multiple structures, and support
for multiple instruction-set architectures. The table reveals stark
disparities among tools. IDA Pro and Ghidra, while covering a wide
range of architectures, offer only limited capabilities for rebuilding
structures themselves and provide insufficient support for pointer
analysis or member-type inference. By contrast, TIE, Retypd, and
Osprey can, in principle, infer the structure body, its pointers, and
the member types and can even group several structures under a
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higher-level abstraction; however, none of these approaches gener-
alizes across multiple architectures. Our goal, following the direc-
tion suggested in Figure 2, is to predict fine-grained variable types
while simultaneously grouping structure members.

The TYGR paper makes it clear that its goal is only to infer each
variable node’s type independently with an R-GCN, and it does not
consider consistency across structure fields.

We nonetheless believe that the embeddings TYGR learns encode
cues beyond mere type labels—such as shared access patterns and
dependencies among members of the same structure. When the
entire DFG is viewed, nodes belonging to the same structure might
still cluster together in vector space even if they reside in distant
subgraphs. Leveraging this property could pave the way for field-
level clustering and, ultimately, automated grouping at the structure
level.

2.3 Graph Neural Networks for Type Inference

This section provides an overview of the processing pipeline pro-
posed in the original TYGR paper and organizes the components
necessary for the reproduction experiments. TYGR consists of four
major stages: (i) binary preprocessing, (ii) DFG construction, (iii)
initial node embedding based on node features, and (iv) embedding
and type classification using a GNN.

In the first stage, binary preprocessing is performed using angr([5].
The goal here is to construct a CFG composed of the intermediate
representation VEX IR derived from the instruction set architecture
(ISA). A key advantage of using angr is that it mitigates a common
limitation in many existing studies: their dependency on specific
architectures. Because angr can lift binaries into the architecture-
independent VEX IR, it supports a wide range of ISAs including
x86, x64, ARM, MIPS, and RISC-V. As a result, the downstream
learning modules can focus purely on data dependencies without
being architecture-aware. VEX IR captures register and memory
accesses in an ISA-formatted manner[3], and angr also supports
transformation into a CFG at the basic-block level.

Using the generated VEX IR and its associated CFG, a DFG is
constructed, where nodes represent registers or memory offsets,
and directed edges correspond to operations acting on these nodes.
Multiple paths may emerge in the graph due to constructs like
conditional branches (e.g., if-statements).

To prepare the DFG for processing by a GNN, each node is
assigned an initial embedding based on its structural and semantic
characteristics. TYGR embeds each DFG node into a 31-dimensional
one-hot vector. These features include bit width, immediate value
patterns, and other low-level attributes. Edges are labeled with one
of 44 operation types, each represented using a one-hot vector as
well.

Subsequently, the embedded DFG is passed through an 8-layer
RGCN (Relational Graph Convolutional Network), where message
passing is performed at each layer to iteratively update the node
representations. The parameters are not shared across layers, the
activation function used is GELU, and the aggregation function is
mean pooling.
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mov DWORD PTR [rbp-0x20],0x1 int [Non Group]
mov edx,DWORD PTR [rbp-0x18] int [Group 0]
mov eax,DWORD PTR [rbp-0x20] int [Non Group]
mov DWORD PTR [rbp-0x18],eax int [Group 0]
mov eax,DWORD PTR [rbp-0x20] int [Non Group]

mov WORD PTR [rbp-0x14],0x6b6f
mov BYTE PTR [rbp-0x12],0x0

char [Group 0]
char [Group 0]

add DWORD PTR [rbp-0x20],0x1 int [Non Group]
cmp DWORD PTR [rbp-0x20],0x5 int [Non Group]
mov DWORD PTR [rbp-0x1c],0x1 int [Non Group]
mov edx,DWORD PTR [rbp-0x10] int [Group 1]

mov eax,DWORD PTR [rbp-0x1lc] int [Non Group]
mov DWORD PTR [rbp-0x10],eax int [Group 1]

mov eax,DWORD PTR [rbp-0x1c] int [Non Group]

mov WORD PTR [rbp-0x0c],0x6b6f
mov BYTE PTR [rbp-0x0a],0x0
add DWORD PTR [rbp-0x1lc],0x1
cmp DWORD PTR [rbp-0x1lc],0x5

char [Group 1]
char [Group 1]
int [Non Group]
int [Non Group]

#include <stdio.h> 1186:
#include <string.h>
118f:
typedef struct { 1192:
int count;
char constant[3]; 1197:
} MyStructl; 119a:
typedef struct { 1la4:
int count; llaa:
char constant[3]; llae:
} EESERIEED ; 11b2:
int main(void) { 11b8:
MyStructl s1 = {6, ""};
MyStruct2 s2 = {0, ""}; llcl:
1lc4:
for (int i = 1; i <= 5; +i++) {
sl.count += 1; 11co:
if (i % 2 == 0) ’ llcc:
strc sl.constant, "ok");
3 py( ) )5 136
1ldec:
for (int i = 1; i <= 5; i++) { 1le0:
s2.count += 1; 1lle4:
if (i % 2 == 0)
) strcpy(s2.constant, "ok");
return 0;
}

\ﬁ/—/

Envision variable types and structure grouping ‘

Figure 2: Left: A C function with two simple structs. Right: Variable type prediction and struct grouping at corresponding stack

offsets.

3 Learning GNN model for Structural Semantics

3.1 Research challenges in applying DFGs to
GNNs

TYGR reports its results with a single architecture that directly
adopts the message-passing design of R-GCN [17], yet it never
explains why R-GCN was chosen or how it fits a data-flow graph
(DFG) better than other approaches.

The four architectures in Table 2 share the message-passing
paradigm, but they aggregate information and treat edges in fun-
damentally different ways. GCN averages the features of adjacent
nodes uniformly, offering low computational cost and a simple im-
plementation, although it tends to dilute important dependencies
when edge semantics vary. GAT introduces an attention mechanism
that learns individual importance weights for each neighbor, allow-
ing it to highlight essential dependencies while down-weighting
noise. R-GCN goes a step further by assigning a separate weight
matrix to every relation type, making it highly compatible with
DFGs that carry dozens of distinct operation labels. Finally, GGNN
employs GRU-based gated recurrent propagation, enabling it to
incorporate long-range dependencies over multiple hops.

Because a DFG captures where values are produced, propagated,
and consumed inside a binary, its nodes and edges exhibit a wide
diversity of relationships. Consequently, the most suitable GNN
depends on how many heterogeneous edges the graph contains
and how prominently long-distance dependencies appear.

For this reason, it is essential to evaluate more than a single
model, comparing multiple GNNs and examining their respective
strengths and weaknesses. Doing so clarifies the rationale behind
model selection and supports evidence-based architecture choices
for downstream tasks such as type inference and program compre-
hension.

3.2 Proposed Method

This study aims to systematically evaluate how different graph neu-
ral network (GNN) architectures capture variable-access patterns in
binary code and how much they improve type-inference accuracy.
We compare four architectures: the relational graph convolutional
network (R-GCN) employed in TYGR [22], the vanilla graph convo-
lutional network (GCN) [9], the graph attention network (GAT) [18],
and the gated graph neural network (GGNN) [11]. GNNs learn node
representations by mapping sets of nodes into a latent space accord-
ing to the local and global relational structure encoded by nodes
and edges; however, because each architecture weights edges and
aggregates messages differently, the resulting embeddings possess
distinct characteristics. We therefore quantify how these differences
emphasize or abstract variable memory-access patterns and how
they ultimately affect type-inference performance.

Following the notation of TYGR, let G = (V, E) be the directed
data-flow graph of a function, and let each edge e = (u,r,v) € E
denote a relation of type r from node u to node v. TYGR augments
the graph by adding a backward edge for every forward edge that
has a well-defined inverse relation, thereby enabling bidirectional
message passing. Each node v € V is associated with an initial
feature vector x, € RPD, which is transformed into the initial node
embedding hz(,o) = WoXy + bg, where Wy € R4%D and by € R are
trainable parameters, D denotes the feature dimension, and d is
the embedding size. We denote by hz(,l) the embedding of node v at
layer [ and use o(-), such as ReLU, for nonlinear activation. Let N
be the set of incoming neighbors of v, including those connected via
the added reverse edges. In what follows, we present the layer-wise
node-embedding update rules for each GNN model in our approach,
employing the same graph and feature settings as in TYGR.



SURE ’25, October 13-17, 2025, Taipei, Taiwan

Sakamoto et al.

Model

Key Characteristics

R-GCN (Relational GCN)

GCN (Graph Convolutional Network)

GAT (Graph Attention Network)

GGNN (Gated Graph Neural Network)

Utilizes separate weight matrices for each relation type, enabling multi-
relational message passing; effective when a graph contains many distinct
edge labels, such as operation kinds in a DFG.

Applies shared weights uniformly to all neighboring nodes, capturing local
structure efficiently; may underperform on graphs with heterogeneous edge
semantics.

Learns attention coefficients for each neighbor, emphasizing important depen-
dencies while down-weighting noisy edges; robust to heterogeneous or noisy
graphs.

Employs GRU-based gated recurrent message passing, making it well-suited
for capturing long-range dependencies and iterative patterns in control or data

flows.

Table 2: Models and Key Characteristics

In Graph Convolutional Networks (GCNs), the embedding of
a node v at layer I, denoted hl(,l), is obtained by first aggregating
the previous-layer embeddings h,gl_l) of the node itself and of
its neighbors u € N (v). This sum is normalized by the node de-
grees, multiplied by the layer weight matrix W and then passed
through a non-linear activation function.

e > el
JEN(i)U{i} /d; dj
Here, d, is the degree of node v (including the self-loop), and
o is an activation function such as ReLU. The formula represents
a graph convolution that averages feature vectors from adjacent
nodes, scaling each contribution by the symmetric normalization
factor 1/vdydy. In other words, a GCN computes the next-layer
embedding by averaging and weighting the features of node v and
its neighborhood N (v).
Relational GCNs (RGCNs) extend GCNs to multi-relational graphs
by using distinct weight matrices W, for messages arriving along
each edge type r.

I D, 1 D,
Y = a(w0<>hg> Y T w | @
reRueNj v

The next-layer embedding of node v, hz(,lﬂ), is obtained by ap-
plying the weight Wr(l) to the previous-layer embeddings h,(ll) of
neighbors u connected via relation r, averaging these messages
within each relation, and then summing over all relations. In addi-

tion, a self-loop term applies WO(I) to the node’s own representation

hz(,l) .Finally, a non-linear activation function o (e.g., ReLU) produces

the updated embedding hz(,l+l).
In Graph Attention Networks (GATs), an attention coefficient

af,ll} is introduced for the message that node v receives from each

neighbor u € N (v).

(I+1) _ () (D1
h; =0 a;; hj w® (3)

JEN(D)U{i}

The coefficient az(,lll) is an attention weight learned from the fea-

ture vectors of nodes v and u and is normalized by a softmax so that
the weights over each neighborhood sum to 1. Consequently, node
v assigns larger weights to informative neighbors and suppresses ir-
relevant information. In the equation, W is the weight matrix for
layer [, and o is a non-linear activation. In short, a GAT aggregates
messages from neighbors with attention-based weights, empha-
sizing more important neighborhood information when updating
embeddings.

In Gated Graph Neural Networks (GGNNS), gated recurrent units
(GRUs) are used to iteratively update node representations. At
each step (layer) I/, node v first forms the message mz(,l) by linearly
transforming and summing the embeddings of its neighbors, and
then combines this message with the previous hidden state in a

GRU to produce the new embedding hz(,l).

nY =GrU(A'Y, T AT W ) (4)
JEN)

Concretely, the neighbor message is aggregated as

mz(,l) = YueN(o) W(I)hl(,l_l), which, together with the previous
state hz(,lfl), is fed into a GRU cell to yield the updated embedding
hz(,l) . Inside the GRU, reset and update gates adjust the relative im-
portance of the old state and the new message, mitigating vanishing
gradients and supporting long-range information propagation. As a
result, in a GGNN, neighborhood information is propagated through
gated mechanisms over multiple steps and gradually reflected in
the embedding of node .
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4 Experiments and Evaluation

4.1 Dataset for Experiments

In this paper, we employ the TYDA dataset[22], which comprises bi-
naries compiled from a variety of software repositories maintained
by the Gentoo and Debian projects. Each binary is built with debug-
symbol inclusion enabled (using the -g option), thereby embedding
DWARF-format debug information. This DWARF metadata con-
tains type definitions and structure layouts, and it serves as the basis
for our data-preprocessing pipeline. We utilize the preprocessing
scripts distributed alongside the dataset and, taking computational
resource constraints into account, process as much of the available
data as is feasible. Table 3 reports the total number of functions and
variables that were successfully processed.

Opt. Level | Functions | Variables
00 338,520 7,924,530
01 69,989 1,938,719
02 61,418 2,079,354
03 66,466 428,856

Table 3: Number of functions and variables per optimization
level (x64 binaries)

4.2 Comparison with TYGR

In our experiments we randomly sampled the x64 binaries in the
TYDA data set and split the samples into training, validation and test
partitions in an 8 : 1 : 1 ratio. We implemented R-GCN, GAT, GGNN
and GCN, but here we concentrate on the R-GCN configuration
that mirrors the one used in the TYGR paper. The hyper-parameters
followed that reference: a learning rate of 10~ 3, batch size 32, the
Adam optimiser, eight message-passing layers and a hidden dimen-
sion of 64. Training stopped as soon as the validation loss reached
its minimum. All runs were carried out on an Ubuntu 20.04 server
equipped with two Intel Xeon E5-2687W v4 processors, 400 GiB
of RAM and four Tesla K40 GPUs. Precision, Recall and F1-score
served as the evaluation metrics; we computed them separately for
base and struct variables and reported their mean as F1 average.

Table 4 summarises the resulting type-inference accuracy. At
optimisation level O2 the F1 average climbed to 0.798, whereas at
00 it stayed at 0.701. For base variables the F1-score rose from 0.748
(00) to 0.777 (0O2); for struct variables it increased from 0.654 (O0) to
0.819 (02). Thus the inlining-heavy O2 setting achieved the highest
accuracy, while the greater amount of noisy information present in
00 tended to depress performance.

The TYGR paper reports overall F1-scores on x64 binaries of
0.825 at 00, 0.782 at O1, 0.777 at O2 and 0.748 at O3. Our O2 result
exceeds TYGR’s by 2.1 percentage points, whereas our OO0 result
falls short by 12.4 points. We believe this discrepancy stems from
differences in the sample mix: our data set contains many binaries
that make intensive use of system calls, which diversify pointer
and structure access patterns. At O2, however, the increased graph
density produced by inlining allowed R-GCN to exploit structural
cues more effectively, leading to a higher score than TYGR’s at that
level.
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Opt. Level base struct F1 average
Precision Recall Fl-score | Precision Recall Fl-score | (base, struct)
00 0.8315 0.6936 0.7484 0.7212 0.6328 0.6544 0.7014
01 0.7651 0.5233  0.5875 0.7737 0.7059  0.7173 0.6524
02 0.8248 0.7464  0.7772 0.8950 0.7926  0.8190 0.7981
03 0.8192 0.5939 0.6642 0.5971 0.5389 0.5352 0.5997

Table 4: Test results for base and struct variables

4.3 Performance comparison of type inference

Opt | RGCN | GGNN | GAT | GCN
00 74.84 77.42 | 70.66 | 60.51
O1 58.75 67.73 | 60.59 | 55.0
02 77.72 72.63 | 68.16 | 50.41
03 66.42 46.14 | 47.97 | 37.70

Table 5: F1-score (%) for base variables at each optimisation
level

Opt | RGCN | GGNN | GAT | GCN
00 63.28 45.71 69.46 | 21.25
01 71.73 50.4 58.88 | 37.41
02 81.90 55.87 67.02 | 38.62
03 53.51 48.42 36.19 | 8.98

Table 6: F1-score (%) for struct variables at each optimisation
level

Table 5 summarises the F1-scores (%) for base variables at opti-
misation levels O0-O3. At O0, GGNN achieves the highest score
(77.42 %), with R-GCN (74.84 %) and GAT (70.66 %) following, while
GCN lags behind at 60.51 %. GGNN continues to lead at O1 (67.73
%), but its margin narrows as GAT records 60.59%and R-GCN 58.75
%. When the optimiser is tightened to 02, R-GCN surges to 77.72
%, overtaking GGNN (72.63 %) and GAT (68.16 %). Under the most
aggressive setting, O3, all models incur losses, yet R-GCN remains
on top at 66.42 %, whereas GAT and GGNN decline to 47.97%and
46.14%respectively; GCN stays lowest throughout, dropping to
37.70%at O3.

Table 6 reports the F1-scores (%) for struct variables. Here GAT
leads at O0 with 69.46 %, edging out R-GCN’s 63.28 %, while GGNN
and GCN trail at 45.71%and 21.25 %. From O1 onward, however,
R-GCN becomes dominant, rising to 71.73%at O1 and peaking at
81.90%at O2. Even though its score falls to 53.51%at O3, R-GCN still
keeps a clear advantage over GGNN (48.42 %), GAT (36.19 %) and
GCN (8.98 %). GGNN'’s performance on struct variables remains
modest across all levels (45.71-55.87 %), and the edge-agnostic GCN
consistently stays below 40 %, confirming its weakness in capturing
structure-specific semantics.

Table 7 reports the prediction accuracy for base-type variables
in x64 binaries compiled at optimization level O0. Although RGCN
delivers the best accuracy for most types, three exceptions—bool,
164*, and u16 show a slight edge for other architectures. For bool,
GCN surpasses RGCN by 3.9 percentage points, and for i64* GCN
also posts a marginally higher value. In the u16 type, GAT exceeds
RGCN by about 3.93 %, and GCN outperforms RGCN by roughly
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RGCN [ GGNN GAT GCN
Type | Acc(%) | Acc(%) | Acc(%) | Acc(%)

type 57.07 23.79 20.00 17.16
void* 44.48 26.72 23.80 19.24
void** 22.34 14.74 4.71 3.50

struct 57.11 37.05 35.05 24.19
union 22.02 0.40 0.40 0.20
enum 45.14 26.04 23.85 22.73

bool 65.69 56.45 60.99 69.59
char 73.35 35.32 31.17 12.37
i16 38.62 0.00 0.00 0.00
i32 82.55 73.96 80.89 74.05
i64 65.30 52.65 46.39 44.85
ulé 67.90 56.69 71.83 76.17
u32 75.18 47.80 43.19 50.70
u64 69.35 56.87 55.29 50.09
ul2g8 87.29 0.00 0.00 0.00
32 45.08 23.02 34.53 37.17
fo4 87.43 65.60 80.82 71.26
f128 0.00 0.00 0.00 0.00

struct® 89.17 84.94 84.46 83.42
union* 41.56 33.53 30.27 33.57

enum* 44.35 5.24 0.75 1.09
char* 59.03 42.37 40.99 36.94
i16* 39.90 0.00 0.00 0.00
i32* 53.05 4142 36.27 32.59
164 7.44 4.70 1.37 7.83
ulé* 50.89 2.38 20.09 9.28
u32* 34.43 16.23 11.35 12.56
u64* 52.55 36.68 34.64 28.00
f32* 18.72 0.00 0.00 0.00
fo4* 32.85 0.00 0.00 0.00

Table 7: Inference accuracy for Base variable types across
models

8.27 %. Apart from these exceptions, the overall trend still favors
RGCN. Nevertheless, minor signs of shrinking performance gaps in
the signed/unsigned 16-bit family and several pointer types suggest
that biases in data distribution or instruction patterns may warrant
closer examination.

Table 8 lists the prediction accuracy for struct-type variables
across the four architectures. RGCN continues to achieve the high-
est accuracy for the majority of types in structure-member infer-
ence, yet other models prevail for several cases. For instance, in
the 116 type GAT exceeds RGCN by about 3.45 %. In the u32 type,
GAT, GGNN, and GCN outperform RGCN by 8.28 %, 19.43 %, and
37.1 %, respectively. The most striking gap appears in the 132" type:
while RGCN attains only 8.70 %, GGNN reaches 46.74%(a 4.4-fold
relative improvement) and GAT achieves 82.61%(an 8.5-fold relative
improvement), highlighting RGCN’s weakness on pointer types.
Excluding these outliers, RGCN generally retains a 10-30%margin
and remains the top performer overall.

5 Further Analysis
5.1 Feature Analysis

Table 9 enumerates the most frequent mispredicted labels for each
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RGCN [ GGNN GAT GCN
Type | Acc(%) | Acc(%) | Acc(%) | Acc(%)

type 19.78 3.54 3.30 0.00
void* 65.88 51.53 53.18 39.53
void** 72.00 0.00 0.00 0.00
struct 44.48 7.59 9.83 0.00

union 70.62 8.53 20.85 0.00
enum 49.37 7.39 6.67 0.00

bool 66.36 43.06 55.26 42.72
char 50.00 0.00 1.76 10.59
i16 58.62 0.00 62.07 0.00
i32 60.90 15.45 42.10 0.00
164 69.16 9.09 23.38 7.47
ulé 79.69 67.19 45.31 64.06
u32 49.36 68.79 57.64 86.46
u64 75.48 13.89 51.72 11.97
fo4 82.91 12.82 34.19 21.37

struct® 84.21 71.33 77.16 78.89
union® 0.00 0.00 0.00 0.00

enum” 0.00 0.00 0.00 0.00
char” 59.89 23.57 14.61 1.72
i32* 8.70 46.74 82.61 0.00
164* 7.69 0.00 0.00 0.00
ulé” 0.00 0.00 0.00 0.00
u32” 5.34 0.00 0.00 0.00
u64* 31.54 0.00 0.00 0.00
fo4* 0.00 0.00 0.00 0.00

Table 8: Inference accuracy for Structure variable types across
models

types most often receive struct® as the incorrect label; for exam-
ple, void”® nodes are misclassified as struct® 33.00%of the time with
RGCN and 47.26%with GAT, and a similar tendency appears for
struct and 164. Conversely, for the u32 type, misclassification into
the signed integer i32 reaches 10.21%with RGCN, 30.51%with GAT,
and 26.11%with GCN, indicating that sign recognition remains chal-
lenging. Although the current node embeddings encode simple
traits such as “whether the high bit is 1 or 0,” they may still miss the
broader context of arithmetic sign or zero extension. Augmenting
the feature set with cast instructions or mask operations that fol-
low arithmetic results could help strengthen the signed/unsigned
distinction. Additional patterns also emerge—for instance, char is
often confused with bool (61.51%in GCN), and the floating-point
pointer 32 is sometimes replaced by 132 or struct*—highlighting
further avenues for reducing misclassification.

Table 10 lists, for structure-related variables, the most frequently
assigned incorrect label. As with base-type variables, the over-
whelmingly most common incorrect label across all GNN architec-
tures is struct™. For instance, the unknown label type is misclassified
as struct® in 52.99% of RGCN cases, 70.33% for GGNN, 79.12% for
GAT, and 83.52% for GCN.

Confusion between signed and unsigned integers is also pro-
nounced. 132 is mistaken for u32 in 9.44%of RGCN predictions,
19.33%for GAT, 49.69%for GGNN, and 65.49%for GCN, so GCN’s
error rate exceeds RGCN’s by more than a factor of seven. The
reverse direction (u32 — i32 or enum) occurs in roughly 15-22%of
cases, implying that the embeddings do not adequately encode in-

base-type variable. Across all four architectures—including RGCN—many teger signedness. Bit-width proximity further amplifies errors: for
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RGCN GGNN GAT GCN
Type Wrong(%) Wrong(%) Wrong(%) Wrong(%)
type struct* (29.14%) | struct® (48.93%) | struct® (55.08%) | struct* (46.99%)
void* | struct* (33.00%) | struct® (43.93%) | struct® (47.26%) | struct® (55.99%)
void*™ | struct* (47.11%) | struct® (47.26%) | struct® (61.63%) | struct® (61.93%)
struct | struct® (30.11%) | struct* (37.59%) | struct* (42.54%) | struct® (54.03%)
union char (33.63%) bool (32.23%) bool (31.13%) bool (36.94%)
enum | struct* (19.38%) i32 (35.40%) i32 (42.60%) i32 (33.63%)
bool struct® (19.67%) | struct” (28.87%) | struct* (23.51%) | struct® (19.45%)
char struct® (12.40%) bool (32.13%) bool (40.14%) bool (61.51%)
i16 struct* (24.55%) ul6 (31.70%) ul6 (43.97%) ul16 (61.16%)
i32 struct® (9.31%) | struct® (12.91%) | struct® (9.83%) | struct® (11.53%)
i64 struct* (12.67%) | struct® (16.45%) | struct® (18.75%) | struct* (23.13%)
ul6 struct® (19.52%) | struct® (13.15%) | struct® (11.70%) | struct* (11.06%)
u32 i32 (10.21%) i32 (21.89%) i32 (30.51%) i32 (26.11%)
u64 struct® (20.67%) | struct® (26.58%) | struct® (28.87%) | struct* (31.64%)
u128 u64 (6.78%) u64 (88.14%) u64 (94.07%) u64 (82.20%)
32 struct* (32.13%) i32 (25.66%) i32 (20.62%) | struct* (17.03%)
fo4 struct® (7.13%) | struct® (9.98%) | struct® (10.32%) | struct® (8.87%)
128 i64 (63.41%) | struct (68.29%) |  type (63.41%) i64 (63.41%)
struct® char” (2.86%) char” (4.64%) char* (3.84%) char* (4.73%)
union® | struct* (49.90%) | struct® (49.71%) | struct® (48.98%) | struct* (52.98%)
enum” | struct® (30.79%) | struct* (43.64%) | struct® (48.35%) | struct® (51.84%)
char* | struct® (29.51%) | struct® (38.59%) | struct® (40.59%) | struct® (44.52%)
i16* ul6* (20.73%) | struct” (44.56%) | struct* (31.09%) | struct® (57.51%)
i32* struct® (21.20%) | struct® (29.82%) | struct® (40.01%) | struct® (44.41%)
i64* struct® (36.59%) | struct® (38.94%) | struct® (47.75%) | struct® (49.71%)
ul6e® struct® (27.78%) | struct® (37.45%) | struct® (41.62%) | struct® (49.65%)
u32* struct® (33.09%) | struct® (38.53%) | struct® (46.05%) | struct® (51.65%)
u64* struct® (26.50%) | struct” (32.23%) | struct® (39.23%) | struct® (44.95%)
32 i32* (57.64%) | i32* (57.14%) | struct® (71.43%) | struct* (38.92%)
fo4* struct® (31.18%) | struct® (32.61%) | struct® (40.77%) | struct* (40.53%)
Table 9: Most Frequently Misclassified Labels for Base Vari-
ables by Architecture
RGCN GGNN GAT GCN
Type Wrong(%) Wrong(%) Wrong(%) Wrong(%)
type struct” (52.99%) | struct* (70.33%) | struct® (79.12%) | struct” (83.52%)
void* struct® (14.12%) | struct® (35.29%) | struct* (29.18%) | struct” (48.94%)
void™ | struct” (18.00%) | struct® (42.00%) | struct” (42.00%) void* (36.00%)
struct | struct® (20.34%) | struct* (26.03%) | struct* (42.59%) | struct* (64.48%)
union void* (5.69%) u32 (45.50%) u32 (27.01%) u32 (59.24%)
enum 32 (12.97%) u32 (43.78%) 32 (32.61%) u32 (43.42%)
bool char (20.77%) u32 (26.32%) 32 (27.42%) char (38.60%)
char enum (21.76%) u32 (58.82%) 132 (55.29%) | struct” (36.47%)
i16 ul6 (34.48%) ul6 (72.41%) u32 (17.24%) ul6 (68.97%)
i32 u32 (9.44%) u32 (49.69%) u32 (19.33%) u32 (65.49%)
164 struct (8.77%) | struct* (67.86%) | struct” (34.42%) | struct® (77.60%)
ulé u64 (4.69%) u32 (12.50%) 16 (31.25%) u32 (12.50%)
u32 enum (21.50%) 132 (15.45%) 32 (18.15%) struct” (4.94%)
u64 char” (6.44%) u32(26.61%) | struct* (13.22%) u32 (40.50%)
fo4 i32 (10.26%) u32 (48.72%) | struct* (39.32%) u32 (39.32%)
struct* char* (8.48%) struct (8.44%) u32 (10.72%) u64 (13.42%)
union* u32 (70.00%) u32 (40.00%) i32 (40.00%) u32 (70.00%)
enum® | struct* (59.57%) | struct® (85.11%) | struct” (91.49%) | struct® (97.87%)
char* | struct* (30.09%) | struct* (61.67%) | struct” (70.05%) | struct” (86.63%)
i32* struct” (60.87%) | struct® (41.30%) struct” (8.70%) | struct” (47.83%)
164 struct® (61.54%) | struct* (92.31%) | struct* (88.46%) | struct” (88.46%)
ulé* struct (38.10%) | char* (58.73%) | struct* (93.65%) | struct* (95.24%)
u32* struct® (45.99%) | struct* (67.95%) | struct* (85.16%) | struct” (91.10%)
u64* struct” (36.10%) | struct* (50.62%) | struct* (81.33%) | struct” (89.21%)
fo4* struct* (66.67%) | struct* (83.33%) | struct® (100.00%) | struct* (100.00%)

Table 10: Most Frequently Misclassified Labels for Struct Vari-

ables by Architecture

16-bit integers, 116 is mislabeled as u16 in 34.48%of RGCN outputs,

72.41%0f GGNN outputs, and 68.97%of GCN outputs.
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5.2 Impact of DFG-Derived Properties on GNN
Type Inference

To elucidate the relationship between DFG-derived structural prop-
erties and the correctness of GNN-based type inference, we ana-
lyzed both base and struct variables by computing, for each node,
its in-degree, out-degree, degree centrality, betweenness centrality,
and eigenvector centrality on the DFG. We focused on the GCN
and GAT architectures, which demonstrated superior accuracy for
certain types compared to RGCN, based on our earlier error analy-
sis. This approach aims to reveal how differences in the way each
model leverages graph-structural features contribute to success or
failure in type prediction. For these experiments, we employed a
logistic regression with an L1 penalty, using the liblinear solver
and a maximum of 2000 iterations to ensure convergence stability.
To address class imbalance, class_weight was set to “balanced,” and
random_state was fixed at 0 for reproducibility.

Furthermore, we exclude from the analysis any classes for which
all predictions are either entirely correct or entirely incorrect, as
well as classes with fewer than ten evaluation samples.

Model Dataset ROC-AUC eigen_centrality deg_centrality betweenness in_deg out_deg
RGCN  Base 0.601 0.3479 -0.0770 -0.0317  0.0199 0.0000
RGCN  Struct 0.758 -1.3435 4.2249 -1.7277 -0.3547  -0.0006
GAT Base 0.581 0.3652 -0.2504 -0.0572  0.0499 0.0000
GAT Struct 0.734 -0.9867 4.1682 -2.2132  -0.2213  -0.0000
GCN Base 0.574 0.3484 -0.2484 -0.0659  0.0495 0.0000
GCN Struct 0.835 -0.8968 5.1661 -2.8307 -0.4445 -0.0002
GGNN  Base 0.574 0.3285 0.1855 -0.0771  0.0507  -0.0002
GGNN  Struct 0.818 -0.9985 5.0008 -2.6030 -0.4637  -0.0000

Table 11: Logistic-regression coefficients (L1, class_balanced)
for each GNN and data set

Table 11 summarizes the results of logistic-regression analyses
applied to the Base and Struct variables for four GNN architec-
tures—RGCN, GAT, GCN, and GGNN. With respect to ROC-AUC,
the Base setting yields closely aligned scores (+0.574 to +0.601),
while in the Struct setting all scores rise (+0.734 to +0.835). For
eigen-centrality, all models are positive in Base (+0.328 to +0.365)
but negative in Struct (-0.896 to —1.343). For degree centrality, all
models are slightly negative to slightly positive in Base (-0.077
to +0.185) but strongly positive in Struct (+4.168 to +5.166). For
betweenness, all models assume negative values, spanning -0.0317
to —0.077 in Base and —1.727 to —2.83 in Struct. For in-degree, all
models are positive in Base (+0.019 to +0.050) but negative in Struct
(-0.221 to —0.463). For out-degree, all models remain almost zero
under both Base and Struct conditions.

We next focus our analysis on struct variables that exhibited
higher AUC results.

Table 12 through Table 15 list the logistic-regression coefficients
and AUC scores for a type-identification task restricted to structure
variables. Four back-end GNNs RGCN, GCN, GAT, and GGNN
provide the input features.

Focusing first on struct®, its AUC is extremely high—above 0.96—in
all four tables. Degree centrality is a large positive value, approach-
ing two digits: +9.94 for RGCN, +11.91 for GCN, +13.82 for GAT,
and +10.92 for GGNN, making it a notably strong feature compared
with the others. The in-degree coefficient is strongly negative (-2.39
to -2.87), while the out-degree coefficient remains only slightly neg-
ative. In other words, a consistent connectivity pattern is extracted:
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Type AUC in_deg out_deg deg centrality betweenness eigen_centrality

Type AUC in_deg out_deg deg centrality betweenness eigen_centrality

type 0.8610 -0.0407  -0.0099 3.5359 -1.6765 -3.0799
void* 0.7860 -0.4733  -0.0709 1.7233 -0.2800 0.0676
struct  0.6730  0.0000 0.0000 -0.7982 0.5347 0.2521
union  0.9820  0.0000 0.0000 -3.6088 0.0000 -1.0578
enum  0.3850  0.0267 0.0010 -0.2015 0.2011 0.0000
bool 0.3430  2.0845 1.9238 -3.0047 -1.8449 -0.2770
char 0.8190  0.0000 0.0000 0.0000 0.0000 1.8131
i16 0.6830  0.0000 0.0000 -0.4123 0.1206 0.4439
i32 0.5370 -0.1308  -0.0733 0.3179 0.1469 -0.4497
164 0.7010  0.4060 0.6202 0.4763 -0.4264 -0.9434
ul6 0.8060 -0.7682  -0.0632 1.8887 0.0000 -0.2323
u32 0.7010 -0.3204  -0.1949 0.3072 0.9086 -1.2666
u64 0.9360  1.3089 0.4577 -2.5428 -0.2465 -3.6303
struct®  0.9670 -2.7390  -0.2682 9.9427 -3.9810 -2.0593
char* 0.9100  0.0000  -0.5789 3.9520 0.0000 -1.1484

Table 12: Logistic regression coefficient for each Struct type
of RGCN model

Type AUC in_deg out_deg deg centrality betweenness eigen_centrality

void* 0.8590 -0.9081  -0.0979 2.1168 -0.3564 0.0000
bool 0.9290  0.0000 0.0000 0.2345 1.3772 -7.2623
char - 0.0000 0.0000 0.8176 -0.2739 0.0000
i64 0.7280  0.2684 0.2416 0.3244 0.0000 -2.2686
ulé 0.7040 -0.2486  -0.1503 1.9488 -0.5429 -0.6058
u32 0.7400  0.2544 0.4702 -2.1724 0.0000 1.5836
u64 0.6150 -0.0000  -0.0005 0.1942 -0.0451 -0.1544
struct*  0.9680 -2.8774  -0.4142 11.9105 0.0000 -3.0433

Table 13: Logistic regression coefficient for each Struct type
of GCN model

Type AUC in_deg out deg deg centrality betweenness eigen_centrality

type 0.7080 -0.3047  -0.3084 2.4053 -1.0323 -2.1710
void* 0.7100 -0.2574  -0.1317 1.0894 0.1455 -0.1154
struct  0.6730  0.0379 0.0420 -0.8511 0.4303 0.6680
union  0.8060  0.0000  -0.3940 3.9508 -0.3520 0.0000
enum  0.5660  0.1912 0.0234 0.0000 -0.2027 -0.2775
i16 0.8170  0.0000 0.0000 1.6397 -0.8720 -0.9736
i32 0.6310 -0.1318  -0.0000 -0.4623 -0.2988 0.4282
i64 0.8560  1.3412 1.2383 -0.3802 -1.5398 -2.6727
ulé 0.5470 -0.4331  -0.0212 0.0000 0.0000 1.1046
u32 0.5420  0.0493 0.1723 -0.0899 -0.4303 0.2241
u64 0.6600  0.1471 0.1921 0.0000 -0.2786 -1.0348
struct*  0.9690 -2.3996  -0.0966 13.8245 1.0779 -3.2777
char* 0.8800  0.7943 0.4749 -3.0298 0.0000 -2.4509

Table 14: Logistic regression coefficient for each Struct type
of GAT model

struct pointers are rarely written to from outside, yet they receive
many internal reads and form local hubs. Betweenness is small in
absolute value across all models, suggesting that struct pointers

themselves are unlikely to serve as intermediaries on shortest paths.

For union nodes, the only striking feature is their extremely
high degree centrality. Some models treat this degree centrality
as a positive signal of +3.95, whereas others treat it as a negative
one of -3.60; in both cases, the decision still hinges on the same
cue: a union’s unusually large degree centrality dominates the
classification.

With char?, the sign of the degree-centrality coefficient flips by
model—positive in RGCN, strongly negative in GAT, positive again

type 0.6850 -0.0571  -0.0003 0.0000 0.0000 -2.6667
void* 0.7100 -0.6527  -0.1605 1.5223 0.0953 -0.4661
struct  0.7530  0.0001 0.0461 -1.4496 0.0954 0.8170
union  0.9310  0.0000 0.0000 2.5666 0.0000 -2.2044
enum  0.8620  0.4786 0.2485 -1.8551 0.0000 -2.6526
bool 0.9290  0.0000 0.8863 3.4015 -5.1248 1.6265
i32 0.7060 -0.1570  -0.1145 1.3770 0.6107 -1.3717
164 0.6990  0.0645 0.1962 0.9617 -2.3776 -1.4922
ul6 0.6890 -0.1850  -0.3124 2.2342 -0.6217 -0.8120
u32 0.8320  1.0329 0.1677 -4.9475 1.5130 2.1410
u64 0.6070 -0.1924  -0.0041 0.4246 -0.2810 -0.1058
struct®  0.9600 -2.3914  -0.0112 10.9213 0.0000 -2.4106
char* 0.9370 -0.9948  -0.1406 3.0138 -0.9881 -3.4634
i32* 0.9400 -0.5247  -0.5322 0.0000 -4.4496 5.3288

Table 15: Logistic regression coefficient for each Struct type
of GGNN model

in GGNN—while eigenvector centrality stays negative (-1.14 to -
3.46) across the board. Thus a char”* node operates as a hub locally
but does not stand out globally. Differences in message-passing
implementations invert the degree-centrality sign, yet all models
exploit the same structural property.

The bool type shows strong model dependence. RGCN’s AUC is
only 0.343, barely better than random, whereas GCN and GGNN
both reach 0.929. RGCN assigns positive in- and out-degree weights
and a large negative degree-centrality term of -3.0. GGNN shows
zero in-degree, positive out-degree, and a positive degree-centrality
weight, while GCN displays near-zero degrees, a small positive
centrality, betweenness +1.37, and eigenvector centrality -7.26. Each
architecture captures Boolean broadcast patterns in its own way,
reflecting how the model shares weights and distinguishes edge
types.

For i16, under RGCN degree centrality is slightly negative -
0.41 while betweenness +0.12 and eigenvector centrality +0.44 are
weakly positive; in contrast, under GAT degree centrality is +1.63,
betweenness -0.87, and eigenvector centrality -0.97, showing sign
reversals and increased magnitudes and indicating clear differences
in which features are influential across the models. In both models,
in-degree and out-degree are approximately zero, suggesting that
directed degrees contribute little to i16 discrimination. Taken to-
gether, these results imply that RGCN tends to capture i16 as quasi-
bridge that connect to a small number of high-influence neighbors,
whereas GAT tends to capture i16 as small, locally high-degree hub.

For i32%, the coefficients appear only in GGNN. Both degree terms
are slightly negative, betweenness drops to -4.45, and eigenvector
centrality climbs to +5.33. A 32-bit pointer thus forms a large local
hub that never becomes a transit point. GGNN’s sequential message
passing captures this clear pattern most effectively, leading to high
classification accuracy.

For u32, the coefficient on degree centrality is strongly nega-
tive (-2.17 to -4.95), so a highly connected node is less likely to be
u32. Put differently, u32 nodes tend to form high-degree patterns
that—paradoxically—work against correct type identification. This
graph-attachment style, driven solely by bit width, directly shows
up in the logistic-regression weights.



Toward Inferring Structural Semantics from Binary Code Using Graph Neural Networks

5.3 Analyzing Characteristics of Each GNN
Model

Analysis of struct shows a consistent tendency across all models:
in-degree coefficients are strongly negative, out-degree coefficients
are slightly negative, and degree centrality is extremely strongly
positive. We interpret the consistent elevation of degree centrality
in every model as arising from the fact that struct is repeatedly
used in the code in nearly identical ways. Concretely, the structure
corresponds to a very clear and stable graph pattern in which the
node supplies many local reads while receiving almost no external
writes. Because this pattern is captured by simple, strong features
such as degree and local density, it is detectable by any of the exam-
ined architectures: GCN and GGNN, which average and propagate
neighborhood information; GAT, which emphasizes locality via
attention weights; and RGCN, which handles edge-type—-specific
propagation. The combination of these indicators suggests that, on
the DFG, the node behaves as a local hub that is rarely written to
but fans out reads to multiple neighbors. In other words, struct*
plays the role of providing many peripheral reads while not be-
ing actively updated, which in turn explains the consistent trend
observed in structure-variable prediction performance.

For i16, under RGCN degree centrality is slightly negative while
betweenness and eigenvector centrality are weakly positive. Under
GAT these signs are reversed and the magnitudes increase. From
this we infer that RGCN tends to capture i16 as a quasi-bridge that
connects to a small number of high-influence neighbors, whereas
GAT tends to capture i16 as a small, locally high-degree hub; thus
i16 appears to exhibit at least two distinct occurrence patterns.
Because GAT’s mechanism emphasizes such locally high-degree
hubs through attention weights, it is well matched to this pattern
and therefore achieved better performance than RGCN.

For u32, both GGNN and GCN showed significantly higher eigen-
vector centrality compared to R-GCN and GAT, while also demon-
strating relatively strong negative degree centrality. This suggests
that u32 nodes function as concentrated junctions in the DFG—few
in number, but heavily referenced by influential neighbors. Con-
sequently, GCN, which captures features that reflect the influence
of adjacent nodes, proved advantageous and achieved superior
performance in structure type prediction tasks compared to other
methods.

5.4 Limitations and Threats to Validity

The evaluation presented in this paper is limited to two components:
(i) baseline results obtained by retraining the official TYGR imple-
mentation, and (ii) a simple statistical study in which we compute
in-degree, out-degree, degree centrality, betweenness centrality,
and eigenvector centrality for every variable node and compare
their distributions across type labels. In other words, we have not
yet carried out any clustering aimed directly at detecting structure
boundaries, and the intended one-to-one correspondence between
the number of structures and the number of clusters has not been
verified quantitatively.

In our experiments we went beyond the standard type-identification

task and examined how well node embeddings capture relationships
inside structures. To that end we compared four GNN architectures
and inspected the logistic-regression coefficients for each type. The
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analysis revealed several robust feature signatures that hold across
models: structure pointers (struct®) are consistently characterized
by extremely high degree centrality and almost negative in-degree;
union nodes stand out as isolated giants; and char” nodes act as
local hubs that fade at the global level. These findings suggest that
TYGR embeddings encode not only type information but also latent
cooperation among fields and characteristic access patterns.

As a next step we plan a two-stage pipeline. First, starting from
struct® nodes, we will cluster neighboring nodes that share similar
centrality patterns using a density-based algorithm such as DB-
SCAN. Second, we will automatically—or semi-automatically—learn
whether each cluster truly represents members of the same struc-
ture. The rules extracted from the coefficient analysis (e.g., high de-
gree centrality, low betweenness, matching eigenvector-centrality
signs) can serve as an initial filter, while embedding proximity will
be used as an integrated scoring metric in the subsequent stage.

6 Conclusion

In this paper, we presented a method for analyzing binary code
by applying multiple graph neural network architectures to the
task of inferring structure member types and identifying grouping
relationships. Rather than treating the data flow graph as a passive
intermediate form, we interpreted it as a learnable representation
that reflects both semantic behavior and memory access depen-
dencies. Through comparative experiments on real-world binary
programs, we showed that the choice of neural network architec-
ture significantly affects the quality and reliability of type inference
results.

While previous work has mainly focused on a single model, our
study examined additional architectures such as the gated graph
neural network and the graph attention network. These models
demonstrated valuable characteristics. The gated graph neural net-
work was especially effective at capturing long distance dependen-
cies in memory operations, which is important for understanding
structure members that are accessed in nonlocal contexts. The
graph attention network, on the other hand, offered robustness
in the presence of noisy or ambiguous edges by adjusting the in-
fluence of each neighboring node. Although the standard graph
convolutional network achieved lower accuracy, it served as a use-
ful baseline and helped reveal the limitations of uniform message
passing.

Beyond inference accuracy, our analysis of structural features in
the graph revealed that variables associated with structure members
tend to exhibit specific topological patterns. For example, nodes
representing structure pointers commonly show high degree cen-
trality and low inward connectivity, suggesting that structural roles
are reflected in the geometry of the data flow graph itself. This
insight supports the idea that graph neural networks are capable
of capturing not only type-level distinctions but also deeper forms
of structural organization.

As future work, we aim to extend this approach by constructing
a clustering framework that detects and groups related variables
based on both their learned embeddings and their structural proper-
ties in the graph. This will allow us to automatically infer structure
layouts and model program state transitions in a more abstract
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and coherent way. Such a system could benefit a wide range of ap-
plications, including decompilation, vulnerability triage, firmware
analysis, and protocol understanding. Our findings highlight the
importance of using a variety of graph-based models to fully cap-
ture the complexity of compiled programs and recover the semantic
structure that underlies low-level code.
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