Towards Scalable Evaluation of Software Understanding: A
Methodology Proposal

Florian Magin
Fraunhofer SIT | ATHENE
Darmstadt, Germany
florian. magin@sit.fraunhofer.de

Cléo Fischer
Fraunhofer SIT | ATHENE
Darmstadt, Germany
cleo.fischer@sit.fraunhofer.de

Abstract

In reverse engineering our goal is to build systems that help people
to understand software. However, the field has not converged on
a way to measure software understanding. In this paper, we make
the case that understanding should be measured via performance
on understanding-questions. We propose a method for construct-
ing understanding-questions and evaluating answers at scale. We
conduct a case study in which we apply our method and compare
Ghidra’s default auto analysis with an analysis that supports binary
constructs that are specific to Objective-C.

CCS Concepts

« Security and privacy;

Keywords

Decompilation, Evaluation, Understanding, Large Language Models

ACM Reference Format:

Florian Magin, Magdalena Wache, Fabian Scherf, Cléo Fischer, and Jonas
Zabel. 2025. Towards Scalable Evaluation of Software Understanding: A
Methodology Proposal. In Proceedings of the 2025 Workshop on Software
Understanding and Reverse Engineering (SURE °25), October 13-17, 2025,
Taipei, Taiwan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3733822.3764672

1 Introduction

The majority of software deployed today is proprietary, so the
people deploying it only have access to the compiled binaries, and
not the original source code. This is a major problem for safety and
security because those who deploy software need to understand
the software to be aware of vulnerabilities and safety issues and
make informed decisions. The field of reverse engineering seeks to
build software analysis systems that allow users to answer questions
about a software binary’s behavior without requiring access to
the source code. The most prominent tools are decompilers which
attempt to produce an alternative source code for a binary.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SURE ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1910-3/25/10

https://doi.org/10.1145/3733822.3764672

Magdalena Wache
Fraunhofer SIT | ATHENE
Darmstadt, Germany
magdalena.wache@sit.fraunhofer.de

Fabian Scherf
Fraunhofer SIT | ATHENE
Darmstadt, Germany
fabian.william.scherf@sit.fraunhofer.de

Jonas Zabel
Fraunhofer SIT | ATHENE
Darmstadt, Germany
jonas.zabel@sit.fraunhofer.de

One of the biggest challenges in reverse engineering is that
measuring the performance of an analysis system is difficult. A
fundamental obstacle is that there is no ground truth to compare
against. For example, the “correct” output of a decompiler is unde-
fined because the source code that produces a binary is not unique.
Moreover, metrics that have commonly been used to evaluate soft-
ware analysis systems are either easy to game, which makes them
unsuitable for measuring progress, or too costly to implement. This
absence of a good evaluation metric is an important problem be-
cause being able to evaluate current developments is vital for iter-
ating on approaches and making progress.

In this paper, we propose a framework for using understanding-
questions to evaluate software analysis systems: We consider an
analysis better than another if it increases the ability to answer
questions about the software because the ability to answer questions
shows understanding of the software. As part of that framework,
we develop a way to create understanding-questions at scale.

We formalize our experimental setup and make the experiments
that are conducted based on our framework adaptable, transparent
and reproducible. This experimental template goes beyond eval-
uating the impact of an analysis on software understanding, and
also allows the investigation of other questions, such as comparing
the ability to understand software between different LLMs or to
potentially evaluate if an LLM’s ability to understand software is
predictive of human understanding.

Our main contributions are:

(1) A method for evaluating software understanding based on
understanding-questions which is both: hard to game and
practical (Section 4)

(2) A way to create and evaluate understanding-questions at
scale (Section 5) and a case study (Section 6)

2 Background

2.1 Measuring Helpfulness for Answering
Real-World Questions

In reverse engineering, our goal is to build better systems that help
people answer real-world questions related to the software they work
with, such as: “Given this large software package in my supply
chain, how likely is it that because of this package sensitive in-
formation is leaked?” Using the terminology from the Software
Understanding for National Security Roadmap [8] — we want to

https://orcid.org/0009-0003-2858-9873
https://orcid.org/0009-0004-7877-8530
https://orcid.org/0009-0007-8901-8045
https://orcid.org/0009-0006-1737-0077
https://orcid.org/0009-0008-1336-3245
https://doi.org/10.1145/3733822.3764672
https://doi.org/10.1145/3733822.3764672
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3733822.3764672

SURE ’25, October 13-17, 2025, Taipei, Taiwan

build systems that help mission owners answer mission questions.
The most direct way to measure how helpful a new analysis sys-
tem is for answering real-world questions is running a controlled
field experiment. That means providing a group of people who are
responsible for deploying software with an analysis system, and
checking whether their performance on real-world questions im-
proves over a control group of people who only have access to a
baseline analysis system, e.g. a standard analysis tool. However,
there are various practical problems with field experiments.

(1) Noise: There are many factors playing into the ability to
answer real-world questions that do not have to do with
the analysis system. Therefore, to make the measurement
meaningful, the sample size needs to be very large.

(2) Delayed results: Many particularly relevant questions are
about predicting the future, for example whether the soft-
ware will be exploited in a certain way. For such questions,
we only get results after a long time because we need to wait
for the outcome to happen in order to have a ground truth.
This issue may be circumvented by replacing prediction with
retrodiction [14], which means asking experts to answer real-
world questions about past versions of the software. Then
the ground truth, e.g. whether a specific attack was success-
ful, is immediately available. The problem with retrodiction
that is that experts may already know the answers to some
of the questions, which contaminates the data.

(3) Randomization: There may be confounders that influence
the measurement result. For example, people that are willing
to adopt a new analysis system may also be generally better
at predicting outcomes, so they may outperform others even
if the new analysis system is not useful at all. To make sure
that confounders are eliminated, it needs to be randomized
who uses the new system, and not based on their personal
preference. However, it can be difficult to implement random-
ization in practice because some people may not be easily
convinced to use a new analysis system.

(4) Cost: It is very expensive to run a study in practice with a
reasonable sample size.

So in practice, a controlled field experiment is infeasible for most
researchers. In particular, when developing a new analysis system,
we need a metric that is quickly and cheaply available in order to
enable a tight feedback loop for improving the system.

However, it is important to ensure that such a metric actually
tracks understanding, and does not fall prey to Goodhart’s law,
which we explain in the following section.

2.2 Goodhart’s Law and Gameable Metrics

“When a measure becomes a target, it ceases to be a good measure.”

This observation has been attributed to Charles Goodhart [9] and
consequently, it is commonly called Goodhart’s Law [4, 6]. When a
metric is gameable, sometimes called “goodhartable”, that means
the metric can be optimized without optimizing the target that we
actually want to optimize.

For example, the productivity of a programmer is correlated with
how many lines of code they write, and therefore lines of code is a
metric for productivity. However, a CEO who wants to incentivize
productivity should not reward programmers for every line of code

Florian Magin, Magdalena Wache, Fabian Scherf, Cléo Fischer, and Jonas Zabel

they write — which would turn lines of code into a target — because
the programmers would just start to write many meaningless lines
of code. That means lines of code is a gameable metric.

A metric is hard to game if an improvement of the target is nec-
essary for an improvement of the metric. That means improved
performance on the metric is sufficient to infer improved perfor-
mance on the target.

In the example where programmers are rewarded for writing
many lines of code, an improvement in the target “productivity” is
not necessary for an improvement in the metric “longer code”.

3 Related Work and Limitations of Existing
Evaluation Approaches

In this section, we review existing evaluation methodologies. In
summary: quality metrics, LLM-as-judge, and recompilation success
are easy to game and therefore unsuitable for evaluating software
analysis systems. Other approaches, like real-world impact (e.g.
CVE-based evaluations) and semantic similarity are hard to game,
but both face practical difficulties.

Quality Metrics and Recompilation Success are Easy to Game.
There are various quality metrics for software analysis systems: Su-
perficial metrics such as lines of code or number of goto commands
[15], low cyclomatic complexity [13], asking users how readable
they find the code [5], or asking LLMs (LLM-as-judge) [7].

To see why all these approaches are easy to game, consider an
“analysis system” which always outputs print "hello world".
That output contains no goto commands, has a low cyclomatic
complexity, and would be judged as very readable by both humans
and LLMs, so it would score highly in those metrics. However, if
the function that is analyzed does anything different from printing
“hello world”, then the output print "hello world" is not help-
ful at all. While in this particular example, the problem would be
obvious to anyone using the analysis system, this kind of gaming
could also be done in a more subtle way, for example by replacing
meaningless parameter names with names that carry a false mean-
ing, e.g. by replacing paraml with server_address even though
paraml is not a server address.

Another metric that is commonly used is recompilation success,
that means whether the decompiled code can be recompiled without
errors [7]. However, this metric can easily be gamed as well, since
print "hello world" also compiles without errors.

Real-World Impact and Semantic Similarity. The real-world im-
pact of an analysis, such as finding new vulnerabilities that are
assigned CVEs, is hard to game, since software understanding is
a necessary condition to find vulnerabilities. This holds also for a
semantic similarity metric: The idea of similarity-based approaches
is that we compare how similar the decompiled code is to the origi-
nal source code. If an analysis system produces an output that is
semantically similar to the original source code, that is sufficient
for understanding (assuming that the original source code provides
significantly more understanding than the binary, which is usually
the case), so similarity-based approaches are not easy to game.

These two metrics are reasonable but come with practical prob-
lems. Real-world impact is a very good metric, but it can only be
used in rare cases. For example, an analysis that improves software

Scalable Evaluation of Software Understanding

understanding in malware analysis, e.g. understanding the behavior
of malware, will never lead to a CVE.

For using semantic similarity to the original source code as a
metric, we first need a similarity metric for code. One approach
that naturally comes to mind is using a code embedding such as
GraphCodeBert [11], and computing the distance in the embedding
space. The distance in embedding space has been shown to repre-
sent semantic meaning [2]. However, state-of-the-art embedding
models are uninterpretable and may consider irrelevant properties
such as variable name formatting, e.g. CamelCase vs snake_case.

Because of these difficulties, we propose a an evaluation frame-
work based on understanding-questions , which is practical, hard to
game, and intuitively captures the understanding that is necessary
to answer real-world questions. We introduce our framework in
the following section.

4 The Evaluation Framework

In this section, we present our evaluation framework for measur-
ing software understanding. Unlike the existing approaches we
reviewed in Section 3, our approach is not gameable and it is prac-
tical to implement at scale. Our framework is based on the idea
that we can quantify the understanding which an analysis system
enables by providing the output of the analysis system to an agent
(e.g. an LLM, or a person), and then testing how well the agent
performs on answering understanding-questions. If the agent’s per-
formance when answering the questions is significantly improved
after changing the analysis while keeping all other experiment
parameters constant, then the analysis was the cause for the im-
provement. Importantly, since understanding-questions can have
substantial variation in their difficulty, understanding-question per-
formance is meaningless in isolation. Therefore, it is crucial to
always measure the performance of an analysis in comparison to
at least one other baseline analysis. In the following, we introduce
the components of our framework, as depicted in Figure 1.

Corpus. We call the data on which the evaluation is performed
the corpus. For example, a corpus could be a collection of open-
source projects, gathered from GitHub or the language’s package
index. The corpus consists of corpus elements, which determine the
unit on which we want to measure understanding. For our case
study in Section 6 we use the CocoaPods[1] repository, which is
the package index for Objective-C and Swift, as the corpus. The
corpus elements are functions. Other options for corpus elements
would be compilation units or even whole projects.

Representation. After choosing a corpus, we extract a representa-
tion from each element. The representation is information which
captures a property of the corpus element, in a legible way. The
representation can be a short string, but it can also be a more com-
plex attribute like a human-readable description of the relevant
semantics of the corpus element. In our case-study, we choose the
function name, e.g. getLength. The representation can be derived
deterministically via a conventional algorithm, but it could also be
derived non-deterministically, e.g. via an LLM.

Translation from a Corpus Element to a Target. We call the trans-
formation that is applied to the corpus element, which hinders

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Corpus Element

-(int) getLength
{

return length;
}
¢ Translation
Decoys Representation
getArea
getWidth Target
getLength

setLength 1010
0001
1100

Analysis Systems

D W s

Artifacts

A Y Y

| return *(paraml + 8) | | return self._length | | return self._field8

Question

What is the most likely name for this function?
Only respond with the single letter of the answer

A) getLength B) getArea C) getWidth D) setLength

Agents

Y \ 4
[LLM Instance 2| [LLM Instance 3|

LLM Ins!ance 1

Probability of
Answers

OOowW>
OOwWx

oowm>

Figure 1: Overview of our methodology: We evaluate two
analysis systems against a baseline system. The target is ana-
lyzed by each of the analysis systems each producing pseudo-
code as their artifact. We provide the artifacts to different
instances of an LLM, and measure the LLM’s performance
on multiple-choice understanding-questions

understanding by deleting or obfuscating information, the trans-
lation. We evaluate systems that aim to revert the translation and
recover the lost information. The output of the translation is called
the target which is analyzed by the analysis system. The canonical
example for a translation is a compiler which turns source code into
a compiled target, but the idea is much more general: The transla-
tion could be a process that strips symbols, or a string obfuscation
or an obfuscation that adds superfluous information like opaque

SURE ’25, October 13-17, 2025, Taipei, Taiwan

predicates. In our case study, we use the official IDE for Objective-C,
Xcode, for the translation.

Analysis System and Artifact. The target is analyzed using an
analysis system. We call the output of the analysis system artifact.
The typical example is a decompiler which turns a binary target
into a pseudo-code artifact or some other high-level intermediate
language. The analysis system is not necessarily a single analysis
tool. Rather, it could also be a composition of analyses, which
produce intermediary artifacts. The analysis system is also not
required to produce a deterministic output, so for example, it can
involve an LLM-based decompiler or an LLM summary.

Agent, Understanding-Questions and Decoys. To evaluate an anal-
ysis system, we construct understanding-questions based on the
corpus which are then posed to an agent. The agents could be hu-
mans or multiple instances of an LLM. The agent gets access to
either the baseline, or the new analysis system, and we measure
how much the agent’s ability to answer the questions increases
if it has access to the new analysis. To enable scalable question
creation and evaluation, we use multiple-choice questions. That
means, we ask the agent to discern between the representation of
the corpus element of the provided artifact and wrong answers,
called decoys. The questions are created via a simple string template,
for an example see appendix A.

Example. In Figure 1, we show an example for one way to use our
framework. We chose the function name getlLength as the repre-
sentation. We compare two new analyses with a baseline analysis.
The first analysis outputs the pseudo-code return self._field8
as the artifact, the second outputs return self._length, and
the baseline analysis outputs the artifact return *(paraml + 8).
To evaluate if the new analyses improve understanding, we give
an agent access to the artifact and ask it which of the names
A) getlLength, B) getArea, C) getWidth, or D) setLength is
the most likely name for the analyzed function.

Gaming Resilience. To ensure that the evaluation is not gameable,
we require that in any evaluation:

(1) The performance is measured as the improvement relative
to a baseline analysis.

(2) The process of choosing the experiment parameters, espe-
cially the corpus and process of deriving representations, is
reported in detail.

These two requirements prevent two different types of gaming:

Firstly, one might choose the decoys in such a way that the
understanding-questions become very easy. However, in that case
the baseline also has a very good performance, the performance
improvement relative to the baseline is small.

Secondly, one might retroactively restrict the corpus to preferen-
tially include elements for which the agent using the new analysis
outperformed the agent using the baseline analysis. However, that
result is still an interesting contribution: It demonstrates for which
specific corpus subset the analysis improves the performance. There
is only a problem if evaluators claim that the subset of the corpus is
representative for the whole corpus. However, this type of gaming
is made more difficult by the requirement that evaluators report in
detail how they chose the corpus.

Florian Magin, Magdalena Wache, Fabian Scherf, Cléo Fischer, and Jonas Zabel

5 Question Creation at Scale

The creation of understanding-questions is a central part of our
framework because it determines what type of understanding is
evaluated. In this section, we discuss which kind of understanding-
questions are possible, and provide various examples of question
creation methods (Section 5.1), methods for sampling decoys (Sec-
tion 5.2), as well as a method to extend the corpus (Section 5.3).

5.1 Question Creation

We can create different kinds of understanding-questions using the
general idea of creating a multiple-choice question in which the
agent needs to recognize the representation belonging to target
which was translated from the corpus element. What kind of under-
standing we evaluate depends both on the choice of the representa-
tion which represents understanding, and on the choice of trans-
lation which hinders understanding. The abstract understanding-
question is in every case a simple template, where only the artifact
of a fixed corpus element (e.g. a decompiled function body) is pre-
sented and the agent is asked to decide what its representation (e.g.
the function name) is out of a set of answers.

We illustrate this idea with some examples for representations
and translations that give rise to meaningful tasks.

5.1.1 Original Source Recognition. The most basic version of a
recognition question can be constructed by choosing the identity
function as the representation, and using a regular compiler as the
translation, so the agent’s task is to recognize the original source
code. The limitation of this approach is that the original source
code can contain too much specific information that is not related
to interesting kinds of understanding. If an artifact involves the
number 6a09e667 and the source code also contains this number,
then the agent can reasonably assume that the artifact and the
source code probably match because they seem to involve the same
magic number. However it would be better if the agent understood
that this number is related to SHA256, so matching against the
description "computes the SHA256 hash of some data" or matching
the artifact to the function name computeHash would show a more
meaningful understanding.

5.1.2 Function Name Recognition. One way to address the limita-
tion of original source recognition is to use the function name as
the representation. In this case, the translation is still a compiler.
However, the function name might be too short and not meaningful
enough, but that is not necessarily a problem as the overall experi-
ment process measures the performance improvement relative to a
baseline. Even if the understanding that the new analysis provided
only helps by ruling out a few function names that are definitely
wrong, that still increases the chance of correctly guessing from
the left-over set, and there is a measurable performance improve-
ment. In our case study in Section 6, we use this way of generating
questions, and measure a significant performance improvement.

5.1.3 LLM-Generated Description Recognition. We may choose
LLM-generated descriptions of the original source code as the rep-
resentation, and ask the agent to distinguish the description of the
original code from descriptions of other corpus elements. Descrip-
tions are a meaningful representation which carries more semantic

Scalable Evaluation of Software Understanding

content than function names, while avoiding the pattern-matching
failure mode of original source recognition.

5.1.4 App Store Description Recognition. We may choose the trans-
lation to be a simple stripping of metadata instead of a compiler. For
example, if a corpus consists of closed-source apps in an app store,
the translation could be to strip away the app store descriptions
and other metadata. We can then choose the description as the
representation, and the agent has to recognize which description
belongs to the executable code of a particular app. This example
shows that our approach does not necessarily require access to the
original source code.

5.1.5 Runtime-Behavior Recognition. The idea of runtime-behavior
recognition is to evaluate the quality of a static analysis by measur-
ing an agent’s performance in predicting the results of a dynamic
analysis. In this case, each corpus element consists of executable
code plus the environment on which we run the dynamic analysis.
The translation consists of removing the environment, so the tar-
get consists of only the executable code. The representation is the
output of the dynamic analysis. This representation is easy to gen-
erate using existing tooling, and an increase in the ability to predict
runtime-behavior is a meaningful sign for software understanding.

5.2 Decoy Sampling

To construct a multiple choice understanding-question, in addition
to the correct answer, we also need to present answers that are
wrong. We call these wrong answers “decoys”. In this section we
elaborate on how we choose the decoys.

Decoy Sampling. We talk about “decoy sampling” rather than
“decoy generation”, because decoys should always be sampled from
a set of representations such that every wrong answer in a multiple-
choice question is the correct answer to a different question. This
is important because otherwise the evaluation becomes gameable.
For example, one might develop a new analysis which produces
pseudo-code in snake_case, and choose the decoys to always use
CamelCase. Then, the agent with access to the new analysis is
more likely to choose the correct answer than the baseline even if
the analysis does not provide any additional understanding.

In particular, using LLMs to create decoys is not allowed because
it is possible to let the LLM encode some marker into the decoy
that only the new analysis can decode.

Choosing a Representation Set to Sample from. To sample the
decoys, we need to specify a set we sample them from. Which set
to sample from is an important choice because it is central to the
kind of understanding we evaluate. For example, for function name
recognition, if the decoys are sampled from all possible strings
within some length constraints, then most agents will easily decide
that createWebView is the most likely function name when the
alternative is a random-looking string such as mFQeVfxtP, so the
understanding that is measured is relatively basic.

If we want to measure a more sophisticated understanding than
the understanding of what a function name looks like in general, we
can instead choose the set of all representations in the corpus, i.e. all
representations that are the correct answer for at least one question.

SURE ’25, October 13-17, 2025, Taipei, Taiwan

This tests whether the agent understands enough to distinguish
between different function names within the corpus.

However, the understanding that is needed to do this distinction
well may still be relatively basic. For example, in Objective-C, the
number of parameters is encoded in the function name, so the
number of parameters is sufficient for the agent to exclude many
incorrect function names. If we want to measure understanding
beyond the ability to mach the arity, we can sample the decoys from
the set of all function names with the same number of parameters.
In our case study in Section 6, that is how we sample the decoys.

In general, the evaluator is responsible to find a choice of decoys
that demonstrates the kind of understanding that a novel analysis
provides. Even if an evaluator deliberately searches for a set of de-
coys that confuses the baseline analysis, but not the novel analysis,
that result would still be an interesting contribution.

5.3 Extending the Corpus

As mentioned in Section 5.2, we do not allow LLM-generated de-
coys because of the potential for gaming. However, we do allow
generating new corpus elements and add them to the corpus. Mu-
tated corpus elements can be very useful because they allow us
to test for more specific types of understanding. For example, we
can use LLMs (or more traditional methods such as LAVA [3]) for
automatically introducing vulnerabilities to the corpus elements.
We can then add these modified elements to the corpus and use the
introduced vulnerability as the representation. If an agent using an
analysis system can recognize vulnerabilities, that demonstrates
understanding about these specific vulnerabilties.

6 Case Study: Function Name Discernment for
Objective-C

This case study serves as a concrete illustration of our presented
methodology and shows that it is indeed an intuitive method to
quantify the effect of certain choices on software understanding.
We measure the performance improvement of the following task:
An LLM agent is provided with decompiled code of a function
and, based on this code, should decide the function’s name from a
provided pool of possible names, approximating that the agent pos-
sesses an understanding of the decompiled code. We compare the
standard Ghidra analysis with a recent approach from the literature
which enables IFDS dataflow analysis on Objective-C binaries [12].
We run our experiments with two different open-source LLMs —
Deepseek V3 0324 and Devstral 24b. We do not use closed-weight
models like models of the Claude or GPT family, as we could not
set them up on our research cluster. Alternatively, this experiment
could be instantiated with humans as the agent, if we wanted to
measure the impact of the analysis tool on their ability to under-
stand software, or to compare their improvements to the benefits
an LLM gets from the analysis tool. As our corpus is limited and not
rigorously statistically chosen, this study can only be considered a
pilot study which illustrates the overall methodology.

6.1 Experiment Design Rationale

For setting up an experiment we need to make choices for the
parameters in Section 4: corpus, translation, representation, analysis
system, understanding-questions, agent, and decoys.

SURE ’25, October 13-17, 2025, Taipei, Taiwan

Corpus. We choose the CocoaPods repositories collection as our
corpus, as this is one of the few large collections of Objective-C
source code that are available. The assumption that comes with
this choice of corpus is that the kind of understanding that we are
looking to demonstrate generalizes from library code to application
code. This assumption could later be reinforced or refuted by other
experiments on a different corpus with a different task. We manu-
ally selected ten popular CocoaPods repositories, based on both the
number of GitHub stars and the percentage of Objective-C source
code. The projects include a total of 59021 lines of Objective-C code,
counted without comments. We chose the simple corpus for demon-
strating our methodology, but do not claim that the improvement of
the analysis is representative — this would require to use a more
representative corpus such as the whole set of CocoaPods libraries.

Translation. We use the regular XCode compiler to translate the
library source code into the binary or multiple binaries, and remove
the method names from the binaries. The translation resulted in a
total of 4503 different Objective-C methods.

Analysis Systems. We compare two analysis systems. The first is
Ghidra’s default auto analysis, which outputs a decompiled function
body (pseudo-C-code) and a function signature for every function
in each binary. The second analysis is an improved auto analysis
supporting Objective-C specific binary constructs such as resolving
simple dynamic dispatches, creating object layouts from metadata
and rewriting automated reference counting method calls [12].

Agent. As agents, we use Deepseek V3 0324 and Devstral 24b,
two open-weight LLMs. We measure the performance for each
combination of agent and analysis. We prompt the LLMs to respond
with a single token corresponding to one multiple-choice option.
These two LLMs differ in their parameter count by over one order
of magnitude (685 billion vs 24 billion), which allows us to sample
the effect of the analysis on software understanding across model
sizes.

Representation. The representation is simply the method name
of a function from the original source-code.

Understanding-Question and Decoy Creation. The agent is asked to
identify the correct function name from a given set of seven possible
answers (six decoys). The agent has access to the decompiled code
of the function, as well as the function signature, that is the number
and types of parameters recovered by the analysis. The decoy names
are sampled from the set of function names with the same arity
across all analyzed binaries of all projects, removing duplicates.

6.2 Experimental Results

Based on a sample size of 10000 understanding-questions!, we

measured the performance of the two agents as shown in Table 1.
The performance improvement is approximately 17.5 percentage
points for DeepSeek V3, and approximately 19.1 percentage points
for Devstral 24b.

We handled two special cases during the evaluation. Even though
the LLM agent was prompted to only respond with a single token
corresponding to its chosen option, sometimes the agent started
reasoning, which resulted in an invalid token response, e.g. "Based"”

!A question includes the specific decoys, which permits more questions than methods
in the corpus

Florian Magin, Magdalena Wache, Fabian Scherf, Cléo Fischer, and Jonas Zabel

Table 1: Results for the DeepSeek V3 and Devstral 24b LLMs.
Both agent’s performance increases if they have access to the
improved analysis.

Default Analysis | Improved Analysis

DeepSeek V3

Correct 77.52% 94.96%
Incorrect 22.32% 4.96%
Ignored 0.16% 0.08%
Devstral 24b

Correct 56.58% 75.67%
Incorrect 43.31% 24.19%
Ignored 0.11% 0.14%

[on the provided . ..] instead of the number corresponding to the
agent’s chosen option.

In this case, we gave the agent the exact same task with the same
options in the same randomized order as before until the agent
responded with a valid token, which was mostly the case after a
single retry. This procedure was counted as a single answer. We
chose to let the agent retry instead of ignoring the question, since
the reasoning could happen for example in the more difficult cases,
so ignoring the questions could bias the sample.

We sampled the decoys randomly from the equivalence class of
function names with the same number of input parameters, so for
a few functions with many input parameters, the equivalence class
was smaller than seven, so we could not create a task with seven
possible answers. We excluded these cases from our analysis for this
demonstration of the methodology. However, functions with a high
number of arguments could tend to have a larger function body
and be more complex, making it harder for the agent to understand
the function. Hence, ignoring these functions could bias the sample.
Even though we expect the impact to be minor, a treatment of this
case would be desirable for a proper evaluation.

6.3 Discussion of Experimental Results

The experimental results display two clear patterns of note. The
straight-forward one, which was the initial question of the experi-
ment, is that the improved analysis allows correct recognition of
around 20 percentage points more functions compared to the de-
fault analysis case for both LLMs. In our terminology, this could
be summarized as: The analysis that was evaluated improves the
ability of LLMs to understand software, as approximated by their
ability to predict function names.

The secondary result is that we now have preliminary data that
DeepSeek V3 has a measurably better ability to understand soft-
ware compared to Devstral 24b, as approximated by function name
prediction.

7 Conclusion and Future Work

For measuring software understanding in a way that is both hard
to game and scalable, we propose a methodology based on multiple
choice understanding-questions. A central part of the methodology
is the choice of questions and decoys. In our case study, we use
function name recognition as the question, and function names
with the same number of parameters as the decoys, and we find that

Scalable Evaluation of Software Understanding

in the context of Objective-C functions, function name recognition
already provides a large signal (17.5 and 19.1 percentage points
performance improvement between the two analysis systems) —
even though function name recognition is a relatively simple task.
In future work, we are excited about similar case studies in different
domains. In particular, we believe that it is valuable to not just report
positive results such as ours, but also report cases when there is very
little performance improvement, or even a decrease in performance
on understanding-question relative to a baseline analysis. Making
the field aware of negative results helps researchers avoid wasting
effort on approaches that are not promising.

Furthermore, we believe that future work which connects our
ideas to the cognitive science literature is promising, since there is a
rich body of work investigating certain types of decoys, also called
“foils”, “distractors”, or “traps” and their effects on human test sub-
jects. We believe that this literature should be reviewed under the
lens of reverse engineering in order to gain a deeper understanding
of which questions are best suited for measuring which type of
understanding. In particular, we believe that a useful way to think
about understanding in general is Bayesian inference [10].

Framing reverse engineering as software understanding clarifies
our goal and enables us to apply insights from cognitive science to
evaluate progress in reverse engineering.

Acknowledgments

This research work has been funded by the German Federal Min-
istry of Education and Research and the Hessian Ministry of Higher
Education, Research, Science and the Arts within their joint sup-
port of the National Research Center for Applied Cybersecurity
ATHENE.

References

(1]
(2]

(3

=

[4

=

[n.d.]. CocoaPods Project. https://cocoapods.org/

Zimin Chen and Martin Monperrus. 2019. A literature study of embeddings on
source code. arXiv preprint arXiv:1904.03061 (2019).

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-Scale
Automated Vulnerability Addition. In 2016 IEEE Symposium on Security and
Privacy (SP). 110-121. doi:10.1109/SP.2016.15 ISSN: 2375-1207.

Marc A Edwards and Siddhartha Roy. 2017. Academic research in the 21st
century: Maintaining scientific integrity in a climate of perverse incentives and
hypercompetition. Environmental engineering science 34, 1 (2017), 51-61.
Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar
Padilla, Er Xue Hui, Henry Low, and Nicholas Sim. 2023. dewolf: Improving
Decompilation by leveraging User Surveys. In Proceedings 2023 Workshop on
Binary Analysis Research. Internet Society, San Diego, CA, USA. doi:10.14722/
bar.2023.23001

Michael Fire and Carlos Guestrin. 2019. Over-optimization of academic publishing
metrics: observing Goodhart’s Law in action. GigaScience 8, 6 (2019), giz053.
Zeyu Gao, Yuxin Cui, Hao Wang, Siliang Qin, Yuanda Wang, Bolun Zhang,
and Chao Zhang. 2025. DecompileBench: A Comprehensive Benchmark for
Evaluating Decompilers in Real-World Scenarios. doi:10.48550/arXiv.2505.11340
arXiv:2505.11340 [cs].

Douglas Ghormley, Tod Amon, Christopher Harrison, and Tim Loffredo. 2024.
Software Understanding for National Security (SUNS). (2024), 65.

Charles AE Goodhart and CAE Goodhart. 1984. Problems of monetary manage-
ment: the UK experience. Springer.

Thomas L. Griffiths, Nick Chater, and Joshua B. Tenenbaum. 2024. Bayesian
models of cognition: reverse engineering the mind. The MIT Press, Cambridge,
Massachusetts.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

SURE ’25, October 13-17, 2025, Taipei, Taiwan

[12

Florian Magin, Gwendal Patat, and Fabian Scherf. 2025. Heros in Action: Ana-
lyzing Objective-C Binaries through Decompilation and IFDS . In 2025 IEEE/ACM
Ist International Workshop on Advancing Static Analysis for Researchers and In-
dustry Practitioners in Software Engineering (STATIC). IEEE Computer Society,
Los Alamitos, CA, USA, 1-6. doi:10.1109/STATIC66697.2025.00005

Thomas] McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308-320.

Kevin Smith and Edward Vul. 2014. Looking forwards and backwards: Similari-
ties and differences in prediction and retrodiction. In Proceedings of the Annual
Meeting of the Cognitive Science Society, Vol. 36.

Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew
Smith. 2015. No More Gotos: Decompilation Using Pattern-Independent Control-
Flow Structuring and Semantics-Preserving Transformations. In Proceedings 2015
Network and Distributed System Security Symposium. Internet Society, San Diego,
CA. doi:10.14722/ndss.2015.23185

[13

[14

jpory
&

A An Example Understanding-Question

To illustrate the question generation and provide an example of an
understanding-question as used in the case study, we provide the
used prompt template of our case-study.

I have the following task for you.

Analyze the following decompiled code of a
certain function.

Before the function body, I will also
provide the typed arguments of the
function in the usual convention in
round brackets.

Based on the code, decide the function 's
name from one of the listed options,
enumerated and indexed by numbers below.

Please respond with no reasoning or text,
only with a single number that refers to
the option you chose.

Decompiled Code:
{function ["decompiledCode "]}

Enumerated Options:
{enumerated_options}

You have to provide an answer, so a simple
space is not valid.

Remember to make sure that your answer is a
single number, no text. So if you choose
say option 5, your answer should be
only: "5", without any apostrophes.

https://cocoapods.org/
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.14722/bar.2023.23001
https://doi.org/10.14722/bar.2023.23001
https://doi.org/10.48550/arXiv.2505.11340
https://doi.org/10.1109/STATIC66697.2025.00005
https://doi.org/10.14722/ndss.2015.23185

	Abstract
	1 Introduction
	2 Background
	2.1 Measuring Helpfulness for Answering Real-World Questions
	2.2 Goodhart's Law and Gameable Metrics

	3 Related Work and Limitations of Existing Evaluation Approaches
	4 The Evaluation Framework
	5 Question Creation at Scale
	5.1 Question Creation
	5.2 Decoy Sampling
	5.3 Extending the Corpus

	6 Case Study: Function Name Discernment for Objective-C
	6.1 Experiment Design Rationale
	6.2 Experimental Results
	6.3 Discussion of Experimental Results

	7 Conclusion and Future Work
	Acknowledgments
	References
	A An Example Understanding-Question

