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Abstract
Reverse engineering research has mainly focused on binaries com-

piled from C and C++, however, in the iOS ecosystem, neither

of these languages are the focus of application developers. Apple

provides their own languages with Objective-C and Swift as the

official choices, while third party cross-platform frameworks, like

Microsoft’s .NET MAUI, Jetpack Compose, Flutter or even React

Native promise unified development across iOS and Android. To

investigate the relevance of languages for R&D efforts in software

understanding, we conduct a historical analysis spanning 84,432

distinct iOS applications over the past five years.

Unlike previous approaches, we sidestep the technical and le-

gal challenges of the FairPlay DRM system used to encrypt iOS

apps and demonstrate that FairPlay does not cover various useful

metadata, some of which can be used to detect the presence of

programming languages in individual binaries and applications.

Our key findings show that, as expected, Swift is now included in

almost every popular application, however without phasing out

Objective-C usage. Additionally, newer cross-platform languages

like Flutter and Kotlin have seen a steady increase in use, while .NET

has stagnated since 2020. All of these applications still include and

interact with Objective-C, demonstrating that cross-language anal-

ysis is now an unavoidable challenge in the modern iOS analysis

landscape.

CCS Concepts
• Software and its engineering→ Software architectures; • Se-
curity and privacy→ Software and application security; Software
reverse engineering.
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1 Introduction
The closed nature of the iOS ecosystem creates significant chal-

lenges for researchers. Application binaries downloaded from the

App Store are encrypted using the proprietary Digital Rights Man-

agement (DRM) system from Apple, FairPlay [16], and decrypted

during execution. Hence, gaining access to the unencrypted apps

requires not only access to proprietary Apple hardware, but also

having it jailbroken. These constraints complicate the study of iOS

apps and limit our understanding of their ecosystem evolution.

Previous works on automated detection of programming language

and framework identification on iOS were therefore limited to pub-

licly available datasets like the Cocoapods dependency manager, or

smaller real-world samples from the iOS App Store [3, 4].

We introduce a new methodology to extract information from

protected iOS apps, without requiring decryption or Apple hard-

ware, by leveraging the unencrypted parts of an application’s iOS

App Store Package (IPA) file. We then derive and categorize indica-

tors from this information, to identify programming language use

at different levels of granularity.

We applied our indicators to a large-scale analysis of real-world

apps from the App Store, covering a dataset of 84,432 distinct apps

collected over a five-years period from January 2020 to January

2025. These apps were derived from monthly snapshots of the two

thousand most popular free apps in a major European country.

We observed significant shifts in the iOS development ecosystem.

While Objective-C is used in every app of all our monthly samples,

languages like Swift or C++ have now also reached almost full

saturation. We further observed that modern iOS apps use a mix

of multiple languages, and identified the most frequently occur-

ring language combinations. Additionally, newer frameworks and

languages such as Flutter, React Native and Kotlin are emerging.

With a presence of Flutter growing from less than 1% in 2020 to

approximately 12% in 2025. This highlights an increase in language

diversity of apps within the App Store.
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Our contributions can be summarized as follows:

• We demonstrate that FairPlay DRM only covers a limited

amount of information, and that the unprotected information

can be used to identify meaningful data from binaries.

• We provide a new tool working on encrypted apps to extract

such information available in a computationally efficient

manner. [10]

• We performed a large-scale measurement on real-world apps

from the App Store, covering 84,432 distinct apps from the

last five years that stem from monthly snapshots of the two

thousand most popular apps in a major European country.

• We provide the first dataset of such measurements for iOS

to support comparison and further research. [10]

2 Background
The iOS ecosystem is characterized by proprietary file formats and

languages. Previous research on language use in the iOS environ-

ment has predominantly focused on dependencies publicly avail-

able through the CocoaPods dependency manager or open-source

applications [4], that might introduce a bias against commercial

applications often relying on proprietary libraries and frameworks.

2.1 IPA Files
On iOS, applications are downloaded through the App Store as IPA

files. Acting as the Apple proprietary counterpart of APK for An-

droid, IPA files are ZIP or LZFSE archives containing the application

code, resources, and metadata. The IPA internal structure adheres

to a well-established hierarchy. A Payload directory contains the

app bundle, integrating all compiled executables, assets, and re-

source files. The Frameworks folder contains frameworks that the

application can use. Each framework is a packaged collection of

code and resources that provides specific functionalities to the app,

allowing modular development and code reuse.

2.2 Mach Object (Mach-O) Files
The actual executable files and loadable libraries use the Mach-

O file format and can be found inside the application bundle of

IPA archives. The file header provides metadata such as the file

type (executable, dynamic library, or object file), target CPU ar-

chitecture, and the number of load commands embedded within

the file. Load commands instruct the loader how to load segment

mappings, dynamic libraries, and where to link symbols. Segments

delineate contiguous memory regions characterized by specific

access permissions, while sections provide granular subdivisions

within segments.

Following segment mapping, the loader processes the command

LC_ENCRYPTION_INFO_64 which contains the offset and size of the

encrypted memory region. The mechanism relies on the Apple

FairPlay DRM system, ensuring that protected content remains

executable solely on authorized devices. Decryption occurs post-

segment mapping but pre-execution, leveraging device-specific

keys managed by Apple secure infrastructure. This means that the

data is always encrypted at rest, and no official mechanism exists

to decrypt a Mach-O file to yield a valid, but unencrypted, Mach-O

file.

3 Dataset and Data Extraction
In this section, we present our raw dataset and introduce our find-

ings on not DRM protected areas of apps in the iOS App Store. The

analysis is based on monthly historical data starting from January

2020 representing a total of 84,432 distinct applications.

3.1 App Store Dataset Collection & Analysis
Assembling historical iOS app snapshots presents unique difficul-

ties: Apple does not provide public archives of (past) App Store

rankings, and geo-restrictions limit data collection. Our dataset

originates from another project, which continuously collects iOS

applications from the App Store. Due to the purpose of that project,

our dataset excludes Apple’s game categories to reflect business

apps of a major European country. Our dataset therefore represents

a rare continuous record of 2,000 free iOS applications per month,

extending back to January 2020. The apps were chosen by enu-

merating the most popular applications across the iOS App Store

categories [6]. Apple determines which are the most popular free

apps.

This dataset consisted of 11 terabytes of compressed IPA files,

comprising a total of 84,432 unique entries. From here, we extracted

the metadata described in Section 4 as JSON files to perform our

in-depth analysis and store our results. The final measurements

were performed on a Dell PowerEdge R6625 with two AMD EPYC

9374F 32-Core Processors.

3.2 Mach-O Binaries and Encrypted Sections
The LC_ENCRYPTION_INFO load command that implements the

DRM encryption only protects parts of a Mach-O binaries by speci-

fying a memory range that will be decrypted. This memory range

is simply specified via a start offset and a length, which contains

no inherent information about what kind of data is covered by it.

To investigate this we used our overall set of Mach-O binaries to

determine the most frequently occurring sections and analyze if

the sections are covered by the encryption range. With that infor-

mation, we found that sections are always either fully encrypted

or not encrypted, but never partially encrypted.

The __text section in the __TEXT segment was found in all

54,499 Mach-O binaries. It contains the compiled machine code of

the Mach-O binary and its content is covered by the encryption

in all cases. Other sections that are typically encrypted are for

example the Objective-C specific sections __objc_classname and

__objc_methname, containing class and method names. However,

not all potentially usable information is encrypted: We observed

the __oslogstring section in the __TEXT segment occurring 3,764

times, but never encrypted.

The FairPlay DRM system only encrypts specific internal sec-

tions of Mach-O files, such as the .text section, which contains

compiled code. Files and several Mach-O sections containing meta-

data remain unprotected besides the overarching integrity check.

Overall, DRM protects only a small fraction of the data contained

in an iOS app.

4 Identification of Residual Data
In this section, we present our methodology to identify languages

and Third Party Library (TPL) within applications. We first present
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the available metadata that can be extracted from IPA files, with-

out decrypting sections protected by the FairPlay DRM, before

discussing our chosen language indicators.

4.1 Available Metadata
IPA files are secured by code signing to ensure integrity but do not

all employ encryption for confidentiality. Notably, all files within an

IPA, except for the Mach-O binaries, are unaffected by the FairPlay

DRM. Within Mach-O files, the Load Commands remain unen-

crypted by design, providing access to valuable metadata.

4.1.1 File Meta-Data. The file name, size and CRC checksum are

available without extraction, which allows basic checks for file

names, file suffixes and duplicates without needing to extract the

archive file. ZIP files also support partial extraction, which allows us

to only extract the files we need intomemory on demand. This keeps

disk usage low, and saves compute time by skipping unnecessary

decompression of irrelevant files.

4.1.2 File Contents. The content of files can provide information

about specific languages. We can extract unique identifiers for cer-

tain languages such as configuration files, unique resources, or

directly the program code (e.g. code contained in .js files). As an
example, apps that are developed with the cross-platform app devel-

opment framework Ionic [2] typically contain a config.xml that
contains the string cordova. Another interesting file is Info.plist,
which provides us with insights about the app permissions, by iden-

tifying all purpose strings, which typically end with UsageDescr
iption.

4.1.3 Mach-O Entitlement Information. Entitlement information is

stored separately for each Mach-O file within the code signature.

Precisely, it resides in the LC_CODE_SIGNATURE load command and

can be extracted by decoding the contained data structure.

4.1.4 Mach-O Section Names and Sizes. As recalled in Section 2.2,

the LC_SEGMENT_64 Load Command specifies one segment from

the file that should be loaded into memory. A segment consists of

multiple sections, each with their own name, size and address at

which they will be loaded. This provides us with the information

about the section names, which can be used for language finger-

printing. The section sizes for specific known sections can then

also be used to infer metadata without having to decrypt them.

4.1.5 Mach-O Encryption Information. The LC_ENCRYPTION_IN
FO_64 Load Command specifies the area of memory that needs

to be decrypted by the kernel. We extract this information, which

we later match with the section information to determine which

sections are commonly encrypted or left readable, as this is not

publicly documented.

4.1.6 Mach-O Symbols. The LC_SYMTAB and LC_DYSYMTAB Load

Commands provide the unencrypted symbol table for linking pur-

pose. This allows us to extract all symbol names, and determine

whether it is an import or export, and to which library the symbol

is linked. Doing so, we can identify inter-component interaction,

as well as language interactions, within the app.

4.2 Language Indicator Categories
We now use this data to detect language usage. We distinguish be-

tween multiple levels of hierarchical indicators: IPA Level, Mach-O

Level and Symbol Level. Each indicator can only show the presence

of the language on its own level and levels above. For example, a

file in the IPA might imply that the iOS App overall uses a certain

language somewhere, but with no information which part of the

code uses it. A Mach-O Level indicator shows the specific file, and

thus also that the app uses the language, but cannot infer which

part of the code inside this Mach-O relates to this language. At

the bottom are function symbol indicators which allow assigning a

language to a specific function, and thus a specific code region.

Indicators can also be boolean or scalar. For example, some sec-

tion indicators can only be used to show the presence of the lan-

guage, while others allow deriving more information e.g. the num-

ber of Objective-C classes defined inside the binary.

4.2.1 Name Mangling Indicator (Symbol Level). Symbol indicators

assign a language to a specific symbol, leveraging the name man-

gling process used by many languages. Our measurement of this

splits the symbols into three categories: Exports, Imports and Inter-

nals. While the presence of internal symbols cannot be relied on,

the imports and exports symbols must be present if the app makes

use of dynamic linking.

4.2.2 Library Indicator (Mach-O Level). Many languages have

runtime libraries or standard libraries that serve as clear indi-

cators whether a binary makes use of this language in some

capacity. Examples for this include the Objective-C runtime li-

brary /usr/lib/libobjc.A.dylib or the C++ standard library

/usr/lib/libc++.1.dylib.

4.2.3 Symbol Indicator (Mach-O Level). Mach-O files that use cer-

tain languages will often have symbols that imply that the file uses

this specific language. These are similar but distinct from library in-

dicators, and happen if, e.g., the runtime functions of the language

are statically compiled into the binary. In general, we split sym-

bols into three categories. Imported Symbols, Exported Symbols

and internal symbols. Symbols which are imported, or that can be

exported are specifically marked by the metadata needed to facili-

tate dynamic linking. Internal symbols are then simply all symbols

which are neither exports nor imports. Mach-O binaries are special

in contrast to executable such as PE or ELF because their imports

typically explicitly specify which library they should be imported

from. This allows us to group the imports of one Mach-O file into

subgroups for each imported library. This implicitly constructs a

dependency graph between the files inside one IPA.

4.2.4 Section Names and Sizes (Mach-O Level). Compilers use pre-

dictable segment names to store language-specific metadata. While

the exact metadata is often not fully available because the sections

are encrypted, it is still sometimes possible to use side-channel mea-

surements to infer information. For example, if a certain section is

known to contain a list of pointers to the encrypted data for each

class define inside a Mach-O file, we can simply derive the number

of classes via dividing the length of the section by the pointer size.

4.2.5 File Extension Indicator (IPA Level). Some languages ship files

with clear extensions which allows straight-forward inference of
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Table 1: Indicator Availability per Language. (✓) indicates
the use of symbol prefixes instead of true mangling.

Language Mangling Symbols Libraries Files Sections
Objective-C (✓) ✓ ✓
Swift ✓ ✓ ✓
C++ ✓ ✓
C# ✓ ✓ ✓
Kotlin ✓ ✓
Flutter ✓
JavaScript ✓ ✓ ✓

language presence in an IPA file. Common examples for this include

JavaScript and TypeScript which use the extensions .js and .ts.
An uncommon example is the presence of .dll files in apps using

C#. These files are PE files, the executable format normally used

by the Windows operating system, which are loaded by the C#

runtime.

4.3 Language Identification
In this subsection, we outline the various indicators available per

programming languages in the iOS ecosystem for identification.

Note that we do not try to detect the C language, as it is too low

level to leave identifiable artifacts in the available metadata. A

summary of available indicators can be found in Table 1.

▶ Objective-C. Objective-C has been a foundational language for

iOS development since the start of the platform [1]. It integrates

Object-Oriented Programming (OOP) with C, allowing developers

to utilize an extensive runtime and a specific library ecosystem. To

identify the presence of Objective-C, we use the following indica-

tors.

⊲ Mangling:Objective-C does not use conventional mangling,

however, when available, all function symbols are either pre-

fixed with +[ or -[. Other common Objective-C symbols are

prefixed by _OBJC or __OBJC, such as class or protocol sym-

bols starting with __OBJC_CLASS and __OBJC_PROTOCOL, re-
spectively.

⊲ Libraries: As we said, the library ecosystem of Objective-C

is really distinctive, as we can detect the presence of the

runtime library /usr/lib/libobjc.A.dylib.
⊲ Sections: Various sections start with the prefix __objc_.
Most importantly, the section __objc_classlist is a list

of pointers to all classes defined in the Mach-O file, while

__objc_classrefs is a list of pointers to all classes refer-

enced in the Mach-O (includes classes imported from other

components). This allows estimated differentiation between

how much a Mach-O file uses Objective-C and how much

Objective-C code it contributes.

▶ Swift. Introduced by Apple in 2014, Swift is the primary pro-

gramming language for iOS development, actively maintained and

supported by Apple, making it the default choice for iOS app de-

velopment [8]. It was designed to improve safety, performance,

and developer productivity, offering features such as type safety,

memory management, and modern syntax. As identifications for

the Swift language, we can leverage the following metadata.

⊲ Mangling: Swift uses the mangling prefix _$s.

⊲ Libraries:
/usr/lib/swift/libswiftCore.dylib is the runtime

library, though we argue that any library residing in /usr
/lib/swift is an indicator for Swift.

⊲ Sections: Various sections starting with __swift. Of special
importance is the section __swift5_types, which contains

a list of relative pointers to all classes, structs, and enums

defined in the Mach-O file and allows quantification.

▶ C++. C++ is utilized in iOS development for performance-critical

components and integration with existing cross-platform C++ code-

bases. Alongside native C++, iOS developers can incorporate C++

modules with Objective-C code using Objective-C++, making it

suitable for apps that require efficient computations or access to

established C++ libraries. For identificators, C++ offers us the fol-

lowing.

• Mangling:Clang uses the prefix __Z for C++ symbols. Other

mangling schemes used by other compilers are known as

well.

• Libraries:The specific library libc++.1.dylib, can be used
to spot C++ occurences.

▶ C#. The C# language is used in iOS development primarily

through the Xamarin [11] and .NET MAUI frameworks, which

enable cross-platform app development. Xamarin and .NET MAUI

compile C# code into native iOS binaries, providing access to iOS

APIs while allowing developers to share code across platforms. C#

uses the mono runtime to execute Ahead-of-Time (AOT) compiled

code. The IPA typically still contains .dll files that are used by

the mono runtime for features like reflection or serialization. With

Xamarin apps, we often see a Xamarin. prefix within these .dll
files. With .NET MAUI, the prefix of the files is Microsoft.MAUI.
In principle, also other .NET languages like F# and VB.NET can be

used in combination with the above frameworks which produce

the same patterns, that will be detected by these indicators. For

brevity, we only refer to this .NET class as C#. This information

can be used for indicators as follows.

⊲ Files: The presence of .dll files inside the IPA archive is an

indicator of C# code.

⊲ Sections: The il2cpp section can be present in Mach-O

binaries when C# code is converted into C++ code. This is

done with the IL2CPP backend [14] which can be used, e.g.,

in the Unity game framework.

▶ Kotlin. Predominantly used for Android development, Kotlin has

been extended to iOS through KotlinMultiplatform [7]. This enables

developers to share common code between Android and iOS, with

platform-specific components developed with Kotlin Native.

⊲ Mangling: Functions and classes can be identified with man-

gling symbols starting with _kfun: and _kclass: respec-

tively.

⊲ Symbols: The ComposeAppKotlin symbol can identify bi-

naries resulting from Kotlin.

▶ Flutter. Flutter is an open-source framework developed by

Google for building cross-platform apps [5]. For iOS, Flutter uses

the Dart programming language.

⊲ Symbols: Flutter AOT snapshots contain specific symbols

like _kDartIsolateSnapshotData.
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Table 2: Language Occurrence in All 54,499 Mach-O Binaries
and in All 2,052 Apps from January 2025.

Language No. of Binaries No. of Apps
Objective-C 49,221 (90.3%) 2,052 (100.0%)

JavaScript N/A 2,029 (98.9%)

C++ 30,326 (55.6%) 2,016 (98.2%)

Swift 29,628 (54.4%) 1,995 (97.2%)

Flutter 5,280 (9.7%) 247 (12.0%)

Kotlin 252 (0.5%) 182 (8.9%)

C# 34 (0.1%) 58 (2.8%)

⊲ Libraries: Mach-O files using Flutter import the Flutter

runtime library which is simply called Flutter.

▶ JavaScript. JavaScript is used in iOS apps either as an addi-

tion, for example displaying WebViews like policy pages, or as

a cross-platform solution through frameworks like React Native.

We summarize JavaScript, TypeScript and JavaScript bytecode un-

der the term JavaScript for the sake of our comparison with other

languages.

⊲ Files: Specific JavaScript related files can be seen such as

.js, and .ts files.

⊲ Libraries: Specific libraries like JavaScriptCore or Hermes

can be used for JavaScript identification.

⊲ Symbols: The WebView functionality within the UIKit li-

brary is utilized only when the UIWebView symbol is present.

5 Empirical Analysis
5.1 Language Distribution
We now take a look at how programming languages are used across

iOS apps, both in terms of binaries and entire applications, analyzing

the most recent snapshot in our dataset from January 2025.

5.1.1 Language Identification on Mach-O Binary Level. We use the

indicators, described in Section 4.3 to identify the programming lan-

guages present in a Mach-O binary. Among the whole set of 54,499

binaries, we observed that Objective-C is the dominant language,

occurring in ≈ 90.3% of all binaries. The second most frequent

language is C++ (55.6%), closely followed by Swift (54.4%). We were

able to detect Flutter less frequently (9.7%). Kotlin and C# occur

rarely compared to the overall number of binaries, but they are

still relevant on the app level (see Section 5.1.2). The distribution is

pictured in Table 2.

Furthermore, we observed that the most frequent language com-

bination occurring (43.4%) is a combination of C++, Objective-C

and Swift. Pure Objective-C Mach-O binaries occur second most

frequently, with a total occurrence of 26.9%. Interestingly, in the

third most common position (7.2%), we have binaries where none

of our language indicators matches for any language. A manual in-

spection revealed that indeed many of them have a __text section

in the __TEXT segment of size 0. The purpose of this is not clear to

us. The remaining ones were all pure-C libraries like OpenSSL or

ffmpeg, for which we have no detection markers, as explained in

Section 4.3.
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Figure 2: Most Common Language Combinations Detected
in Apps

Figure 1 shows the most common combinations of languages

within Mach-O binaries that occurred more than 100 times within

our data set.

5.1.2 Language Identification on App Level. We observed that the

dominant languages occurring on app level are Objective-C, oc-

curring in all 2,052 apps, as well as JavaScript, C++, and Swift,

each occurring in more than 97% of the app sample. The languages

Flutter, Kotlin, and C# occur significantly less with an occurrence

between 2% and 12%. Table 2 shows the occurrence of a single

language among all 2052 apps.

We observe this trend also concerning language combinations as

shown in Figure 2. The most frequent language combination on app

level is a combination of C++, Objective-C, Swift, and JavaScript

with an occurrence of 74.2%. The less frequent combinations are

composed of Objective-C, Swift and JavaScript with either Flutter

(10.8%), Kotlin (7.8%) or C# (1.9%). Other combinations have less

than 1% occurrence.

5.2 Historical Data
5.2.1 Mach-O Binaries in Apps and their Language Distribution.
We investigated the distribution of the number of Mach-O binaries

per app and observed an increase of the median from 9 in January

2020 to 15 in January 2025. The interquartile range broadened from

[1, 23] to [6, 38] during that time, showing an increase in complexity

concerning the number of binaries in IPA files.

We investigated the occurring languages ofMach-O binaries over

time. The most frequently occurring language, that is used in almost

all Mach-O binaries is Objective-C. There is a slight downward trend
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Figure 4: Monthly Distribution of the Less Common Lan-
guages, Occurring in the App Sample.

from 99.4% in January 2020 to 90.3% in January 2025, indicating

that the number of Mach-O binaries with none of our Objective-C

related indicators is increasing. Swift and C++ have a comparable

percentage ranging between 40% and 60%. We observed a clear

upward trend for Flutter from 0.6% to 9.7%.

5.2.2 Language Distribution on App Level. We discuss the observed

languages in apps between 2020 and 2025, as shown in Figure 3. The

dominant languages Objective-C and JavaScript are relatively stable

in their usage. Objective-C is used in every app of all samples since

January 2020. JavaScript is the second most frequently occurring

language during the whole time span behaving relatively constant,

only slowly increasing from 97.4% to 98.9%. C++ increases from

89.5% to 98.2%. We observed the most significant increase for Swift,

increasing from 68.0% to 97.2%.

We observed an increase of the less established languages Flut-

ter and Kotlin. Flutter increased from ≈ 1.1% to 12.0% occurrence.

Kotlin first occurred in October 2020 and increased to 8.9% in Jan-

uary 2025. The percentage of apps using C# fluctuated between

≈ 2.0% to 4.0% over the observed time span. Figure 4 shows the

detailed measurements of the less dominant languages in that time

interval.

5.2.3 Distribution of JavaScript based Cross-Platform App Develop-
ment Frameworks. Over the period from January 2020 to January

2025, there is a clear upward trend in the usage of JavaScript files

in apps, increasing from ≈75% to over 90%. The presence of React

Native also shows significant growth, doubling from 6% to over

12% in the same time frame. Ionic usage remains relatively stable

with minor fluctuations, generally staying between 3% and 4%. Na-

tiveScript maintains minimal and consistent usage throughout the
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Figure 5: Percentage of All Apps Using JS Cross-Platform
Frameworks or JS Files Over a Five-Year Period.

years, remaining below 0.5%. The combined usage of these frame-

works does not account for all the apps with JS files. This suggests

that a significant portion of JS files in apps are utilized outside these

frameworks, see Figure 5.

6 Related Work
Previous studies have used large-scale crawling systems, such as

PlayDrone [15] or DroidSearch [13], to analyze free Android apps

on Google Play.

In the iOS ecosystem, several studies have focused on analyz-

ing mobile apps and their development practices. For third-party

apps, CRiOS [12] analyzed more than 40,000 iOS apps, identifying

extensive use of third-party libraries and security concerns with

SSL/TLS endpoints, but it pre-dates the adoption of Swift. LibKit [3]

proposed a tool for detecting the name and version of third-party

libraries in iOS apps, leveraging CocoaPods to create fingerprints

of library versions. We directly improve upon previous work, ex-

amining programming language trends across more than 25,000

libraries [4] found on CocoaPods. Their study could only compare

Swift and Objective-C, for which CocoaPods is the official package

manager. Our work can detect usage of other languages such as

Flutter or Kotlin in real-world apps.

Kollnig et al. [9] conducted a large-scale comparative study of

privacy practices in iOS and Android apps, analyzing 24,000 apps

across both ecosystems. While their work focused on privacy con-

cerns, it also underscores the challenges of analyzing iOS apps due

to their encrypted nature and the absence of publicly available tools

for analysis.

7 Conclusion
As iOS apps show a clear trend towards more complexity in terms

of shipped binaries and language usage, there is a now a clearly

demonstrable need for static analysis tools to support inter-binary,

cross-language analyses. While it is clear that cross-language analy-

sis is important, we determined and quantified the languages in the

iOS ecosystem the research should focus on. Besides the established

and still ubiquitous language Objective-C, the focus should also

lie on its language interaction with Swift, C++ and JavaScript, as

well as Flutter as new emerging language. However, it is reason-

able to assume that certain cross-language interactions will occur

more frequently than others. Quantifying these language interac-

tions represents a desirable future work direction, which requires a

further analysis of our processed dataset.
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Our work also showed that protected IPA files contain rich in-

formation that can be used for practical purposes. While this is

important for further analyses, as it allows side-stepping the te-

dious decryption process for many research questions, this is also

important information for app developers, as the details of what

exactly is protected through Fair Play’s encryption are not docu-

mented by Apple and may not match their expectations.

We will publish the analysis tool and the dataset of measurement.

This allows other research groups, which are possibly not deeply

familiar with the iOS ecosystem nor have specialized hardware

setups, to contribute to the state of knowledge for a still opaque

ecosystem.
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