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Abstract
C++ source code abstractions such as classes and methods greatly
assist human analysts and automated algorithms alike when analyz-
ing C++ programs. These abstractions are lost during the compila-
tion process, but researchers have been developing tools to recover
them using program analysis. Despite promising advances, this dif-
ficult problem remains unsolved, with state-of-the-art solutions
self-reporting accuracies of 78% [32] and 77.5% [10] for different
types of abstractions.

In this paper, we address this problem by proposing a newmodel-
based approach for systematically testing C++ abstraction recovery
systems. Our high-level approach is to both jointly and iteratively
refine the abstraction recovery system and a compiler model that
introspects the compilation process. We built EmCee, a model of
Microsoft’s Visual C++ compiler, to apply our technique to the pop-
ular C++ abstraction recovery systems VirtAnalyzer [10] and OO-
Analyzer [32]. EmCee “parses” input files by interpreting them as
answers to a series of multiple choice questions (inspired by the
game “twenty questions”), which makes it very amenable to fuzzing.
We use an off-the-shelf grey-box fuzzer to automatically generate
test cases for EmCee that represent a variety of program structures
and optimizations. We then use these test cases to evaluate the rea-
soning in VirtAnalyzer and OOAnalyzer for soundness problems,
and correct any violations. Using our approach, we identified 27
soundness problems in OOAnalyzer and three in VirtAnalyzer.
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1 Introduction
Asa language of choice for complex systems thatmust be performant
such as web browsers, database engines, productivity suites, and
operating systems, the security of C++ programs has become an
important topic. The proliferation of C++ has spurred specialized
research in many areas of security, including decompilation [13, 14],
reverse-engineering [29], vulnerability detection [7], and runtime
security protections [1, 9, 23, 24, 37, 38]. Many of these applications
requireknowledgeof theprogram’sobject-oriented (OO)abstractions
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mov [ecx], vftable
ret 0

(a) Compiled code

struct D {
virtual ~D() {}

};

(b) Likely source code

Figure 1: Method D::D

from the source code. For example, early runtime protection systems
for C++ programs [1, 37, 38] used the class hierarchy information
in source code to determine whether a method is allowed to call a
method on a different class.

Unfortunately, in many security scenarios, the software we need
to analyze or protect does not include source code. This is often
the case when working with malware and commercial off-the-shelf
(COTS) software. Because source code was traditionally the only
method we had to obtain OO abstractions, this often meant that
otherwise valuable security research could not be applied in practice.
Over time, researchers have begun to address this problemby analyz-
ing programs at the executable level to recover the OO abstractions
they need, rather than assuming they can obtain them from source
code [7–10, 13, 14, 19, 20, 23, 33, 36]. For example, several newer C++
protection schemes only require access to a program’s executable to
function [9, 23, 24].

The recovery of OO abstractions from executables has been stud-
ied forwell over a decade. Earlywork typically focused on extracting
information from a single source of information: virtual function
tables (vftables), which are used to implement dynamic dispatch (i.e.,
virtual functions) in C++ [7–9, 13, 14, 20, 23, 36]. More recent ap-
proaches to OO abstraction recovery also analyze constructor code,
destructor code, or examine the paths in which object pointers are
propagated throughout the program [10, 32]. Despite much promis-
ing work, the core problem remains unsolved, with the state-of-the-
art solutions self-reporting accuracies of 78% [32] and 77.5% [10] for
different types of abstractions.

In our experience, it’s (relatively) easy to formulate an inference
rule that can leverage observations of executable code to correctly
make conclusions about the original C++ source code on 80% of
programs. But soundly reasoning about the corner cases is hard. As
one pathological example, we found an example program in which a
derivedclass is smaller than its base class,whichwestronglybelieved
was impossible (Section 6.1)!

Let’s examine another example that seems straight-forward, but
presents some unexpected complexity. One of the most important
partsofOOanalysis is determining theclass that eachvftablebelongs
to by looking at the compiler-generated code in constructors and
destructors that installs them into objects. Fortunately, the structure
of this automatically generated code iswell-known [16], and inmany
cases this is straight-forward.
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struct B {};
struct D : B {
virtual ~D() {}

};

(a) Source program a

struct B {
virtual ~B () {}

};
struct D : B {};

(b) Source program b

Figure 2: Two C++ programs that are indistinguishable at the
executable level but install vftables for different classes. (a)
installs the derived class’s vftable; (b) installs the base class’s
vftable.Thisexampledemonstrates thedifficulty that inlining
and vftable elimination can pose.

Imagine that we are analyzing the assembly code for method D::D
as shown in Figure 1a. From a cursory analysis, an analyst can see
that the method is installing a vftable to the this object (in %ecx) at
offset 0. Because there are no signs of another class, most analysts
would conclude that D has no base classes, as in Figure 1b, and as a
result, that the vftable must belong to D. And in many cases, those
analysts would be correct. Unfortunately, over time we have learned
that multiple compiler optimizations (Section 5.1) can interact and
produce verymisleading assembly code. For example, Figure 2 shows
two programs that also compile to the assembly code in Figure 1a,
but in which class D inherits from a base class. Although the pro-
gram in Figure 2a will install D’s vftable, as most analysts would
expect, the program in Figure 2b actually installs B’s vftable, even
though there is no evidence of B’s existence in D’s constructor. This is
surprising because constructors usually install the vftables of their
base class, which is a clue that there is an inheritance relationship.
Unfortunately, as Figure 2 shows, this clue is not always present.

In this paper, we attempt to address such problems by proposing a
method to systematically test systems that recover C++ abstractions
from executables, such as VirtAnalyzer [10] and OOAnalyzer [32].
Our high-level approach is to jointly and iteratively refine both an
OO analysis system and an abstract compiler model in tandem. The
compiler model introspects the compilation process and detects
mistakes made by the analysis system, while the analysis system
identifies gaps in the compiler model. To apply our approach to OO-
Analyzer and VirtAnalyzer, we built EmCee, a model of Microsoft’s
Visual C++ compiler. In each iteration of our process, we use an
automatic test case generator—a grey-box fuzzer [12, 22]—to pro-
duce test cases for EmCee. Each test case is an answer to multiple
choice questions (see “twenty questions” below or Section 4.2) from
which EmCee generates a source-level program and the low-level
executable it compiles to. Because EmCee has perfect knowledge
about both the source and executable representations, it can run
the system under test on the executable representation and detect
any incorrect conclusions made about the source program, which
constitute potential soundness violations. An analyst examines each
violation and determines if the problem can be reproduced in the
real compiler. If it can, this is proof of a soundness problem, and the
analyst refines the OO recovery system to fix the problem. (If not, it
suggests the analyst must refine the model compiler.)

At a high level, we build a compiler model (rather than use a
real compiler) to expose internal details of the compilation process
that are not revealed by regular compilers (e.g., MSVC), even with
debug flags. These internal details are important because they pro-
vide ground truth for intermediate observations made by the system

Enter the general maximum size (static max is 5): 1

Create a class? 0: false 1: true 1

Add a method? 0: false 1: true 1

Type of method? 0: Normal 1: Constructor 2: Destructor 1

Add local variable? 0: false 1: true 0

Add class member? 0: false 1: true 1
Type? 0: AbstractType , 1: PtrType , 2: DeletablePtrType ,

↩→ 3: ClassType 3
Cannot create a ClassType because there are no classes.
Selected AbstractType. Creating initializer expression.

↩→ 0: Rvalue 1: Lvalue 0
0: Literal 1: Nullptr 2: New 3: This 4: Call 5: AddrOf 6:

↩→ Deref 7: ObjPtrCast 0

Figure 3: An example session of executing EmCee. Input ap-
pears like this . Themodel compiler’s output is only present
during interactive (i.e., human) use.

under test, such as whether a vftable installation was inlined into
a caller method. Obtaining this ground truth allows EmCee to de-
termine when the system under test concludes an intermediate fact
that is not true. This in turn allows EmCee to test each rule in the
system under test in isolation for soundness (Section 3).

Similar to a real compiler, EmCee transforms a high-level C++
program into a low-level intermediate representation (IR) that is
amenable to analysis and optimizations. However, that is where
the similarities to real compilers end. EmCee purposefully abstracts
away details that are not relevant to OO recovery, such as control
flow, templating, and the specifics of theC++ syntax. EmCee “parses”
its input as answers to a series of multiple choice questions, which
is inspired by the game “twenty questions”. The answers to these
questions indirectly describe the source-code structure of the in-
put program (see Figure 3 for an example). EmCee then outputs
a set of facts or observations about the input program’s structure
and behavior at both the source and executable levels (see Figure 4
for an example). In fact, one way to think about EmCee is that it
compiles programs to facts rather than machine code. Collectively,
these differences make EmCee very amenable to automatic test case
generation, ensuring that advanced but rare OO structures, such as
virtual inheritance, multiple inheritance, and empty base classes,
are represented in the tests. For example, using EmCee, test case
generation easily identified the programs in Figures 1b and 2 as all
compiling to the code in Figure 1a.

We applied our iterative refinement process on two state-of-the-
art OO abstraction recovery systems, OOAnalyzer [32] and Virt-
Analyzer [10]. For OOAnalyzer, an analyst created 39 patches until
the process no longer identified any problems. 27 of these patches
corrected a soundness violation, nine patchesmodified rules to apply
more broadly, and the remainder were small refinements or scaf-
folding code. In total, the process identified and corrected at least
one soundness violation in 24% of OOAnalyzer’s reasoning rules
(19 of 80). It also fixed two rules which would never conclude any
facts. When applying the process to VirtAnalyzer, which is notably
simpler, an analyst created three patches to address soundness vio-
lations, and one patch to allow VirtAnalyzer to make conclusions
more broadly.

Contributions In this paper, we present a newmodel-based tech-
nique for systematically testing C++ abstraction recovery systems.
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% function(1) returns the object pointer that was passed as an argument
returnsSelf(function(1)).
% function(0) receives the object pointer thisptr(8) in ecx
funcParameter(function(0), ecx, thisptr(8)).
% the call at 0x11003 in function(1) passes thisptr(25) in ecx
callParameter(0x11003, function(1), ecx, thisptr(25)).
% the call at 0x11003 in function(1) targets function(9)
callTarget(0x11003, function(1), function(9)).
% thisptr(25) points to 24 bytes allocated on the heap by 0x11001 in function(1)
thisPtrAllocation(0x11001, function(1), thisptr(25), type_Heap, 24).
% thisptr(35) points 8 bytes beyond thisptr(14) in function(4)
thisPtrOffset(function(4), thisptr(14), 0x8, thisptr(35)).

(a) Initial (binary analysis) facts

% function(4) is an OO method
factMethod(function(4)).
% function(4) is defined on class(0)
findint(function(4), class(0)).
% Methods in class(0) are able to call method function(4)
factClassCallsMethod(class(0), function(4)).
% function(12) is a real destructor
factRealDestructor(function(12)).
% entry 0 of vftable(0) points to function(4)
factVFTableEntry(vftable(0), 0, function(4)).
% class(1) inherits virtually from class(0) at offset 8
factDerivedClass(class(1), class(0), 0x8, virtual).

(b) Entity (ground-truth) facts

Figure 4: Example OOAnalyzer facts emitted by EmCee

struct B {
int b_mem;
B() { b_mem = 2; }
virtual void b_vf();
};
struct VB {
char vb_mem;
VB(){ vb_mem = '3'; }
};

struct D : B, virtual VB {
B b_embedded;
virtual void b_vf() override;
virtual void d_vf();

};

Figure 5:Working example program.

Wecreate EmCee, amodel compiler that closelymimics the behavior
of Microsoft’s Visual C++ compiler on 32-bit x86 executables, which
we publish in support of open science.1 Finally, we demonstrate that
our technique is effective in practice by discovering 27 soundness
violations in OOAnalyzer and three in VirtAnalyzer.

2 Background
In this section, we will introduce the necessary background on infer-
ence rules and how C++ programs are compiled.

2.1 Inference rules
Modern OO analysis tools such as OOAnalyzer reason about pro-
grams iteratively, by making a series of smaller conclusions. Each
step of the reasoning sequence begins at a knowledge state, 𝜎 , which
is the set of all conclusions about the program at a point in time. A
tool may make a reasoning step by applying an internal rule to the
current state 𝜎 to form a new knowledge state 𝜎′, which contains

new facts from the rule. We denote this as 𝜎
rule
{ 𝜎′. The new state

𝜎′ then becomes the new current state, and the process is repeated
until no new conclusions can be made. We denote the sequence of
zero or more reasoning steps as 𝜎 {∗ 𝜎′.

Each rule is actually an inference rule:

𝑃1 𝑃2 . . . 𝑃𝑛

𝐶

where 𝑃𝑖 represents the 𝑖th premise of the rule, and𝐶 represents the
conclusion. In essence, the rule asserts that if all the premises are
true, then the conclusion must be true as well. For example, this is
an example rule from OOAnalyzer that states if a method is directly

1Available at https://github.com/sei-eschwartz/emcee

class D size (21):
+---
| +--- (base B)

0| | {vfptr}
4| | b_mem
| +---

8| {vbptr}
12| B b_embedded

+---
+--- (vbase VB)

20| vb_mem
+---

Figure 6: Data layout of D from Figure 5

callable by a base class, it cannot be defined on the derived class:

ClassCallsMethod(𝐶𝑙𝑑 , 𝑀) ClassCallsMethod(𝐶𝑙𝑏 , 𝑀)
DerivedClass(𝐶𝑙𝑑 ,𝐶𝑙𝑏 , _) 𝑀 ∈ 𝐶𝑙𝑚

𝐶𝑙𝑚 ≠ 𝐶𝑙𝑑

OOAnalyzer implements each inference rule as a clause in Prolog, a
declarative logic programming language. The meaning of each type
of fact, such as ClassCallsMethod and DerivedClass are defined in the
OOAnalyzer paper [32].

2.2 Data layout
We assume that the reader has a working knowledge of C++, in-
cluding features such as classes, inheritance, and virtual functions.
Understanding how C++ programs are compiled to executables is
required to understand the nature of OO analysis rules, and why it
can be difficult to know if they are correct. We focus here on Visual
C++ and its ABI (Application Binary Interface), but many of the de-
tails are similar for other compilers and ABIs. For more details about
Visual C++ compilation,we recommend reading JanGray’s excellent
description of the topic [16]. We will use the program in Figure 5 as
our working example, which is inspired by Gray [16]. Throughout
this paper, we will include relevant links as footnotes to Compiler
Explorer [15] sessions, such as this link for the working example
program2. Compiler Explorer is a web service that compiles a source
code program specified by the user and displays the corresponding
assembly code.

We will now explain how class objects are laid out in memory
using a class layout visualization3 of class D, which is shown in

2https://godbolt.org/z/K5qv49Tj5
3Visual C++ will emit these diagrams when passed the undocumented flag
/d1reportAllClassLayout.
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Figure 7: Vftables for B and D

Figure 6. Such visualizations are extremely helpful for thinking
about the validity of OO inference rules, and we will utilize them
to quickly summarize examples and counter-examples throughout
the paper. Object offsets are one of the fundamental observations
made at the executable level, and these diagrams concisely represent
offsets and connect them to the higher-level class structure.

Class layout begins with the special vfptrmember, if it is needed.
As we will discuss in Sections 2.3 and 2.4, the compiler uses special
vfptr and vbptr fields to implement virtual functions and virtual
inheritance respectively. If a class needs its own vfptrmember, it
will be located at offset 0, such as in class B. When possible, Visual
C++ will reuse a member inherited from a base class. For example, D
reuses the vfptr from B. Following the vfptr field (if it is needed),
Visual C++ then lays out each base class that has been inherited
non-virtually; in D’s case, that is B at offset 0. Classes are laid out in
source-code order, except that if a base class’s vfptr field is reused,
that class is always laid out first.4 After this, the compiler includes
a vbptrmember, if needed, such as in D, and then the user-defined
class members, such as b_embedded.

Virtual bases are included last. This includes direct virtual bases,
which are listed in the source code declaration, but also any classes
that are virtually inherited by an ancestor. This is a major difference
between virtual and non-virtual inheritance.

2.3 Virtual functions
Visual C++’s implementation of two features, virtual functions and
virtual inheritance, provide some of the most important information
inOO analysis. Virtual functions are a form of dynamic dispatch that
selects the implementation of a method based on the type of object
themethod is invoked on, rather than the type of pointer or reference
it is invoked through. Like most compilers, Visual C++ implements
virtual functions using compiler-generated virtual function tables
(vftables).

At a high level, a vftable maps each virtual function on that class
to the actual implementation.When that class is inherited by another
class, the derived class is responsible for installing its own vftables,
which may override the implementations. For example, Figure 7
shows the vftables for classes B and D, and D’s vftable overrides B’s
implementation of b_vf. From a reverse-engineering perspective, a
virtual function table belonging to class C is a list of methods that are
guaranteed to be on C or one of its ancestors. Because of this, vfta-
bles were the main source for many early OO reverse-engineering
systems [7–9, 13, 14, 20, 23, 36].

When a derived class overrides a virtual function in a base, Visual
C++ constructs the derived method with a thisptr adjustment, which
is the offset from the base object to the derived object. A thisptr
adjustment𝐴 on C::M indicates that method M expects to be called
with a thisptr pointing𝐴 bytes past the start of a C object. Thismeans
that if M accesses offset𝑂 of its thisptr, it is actually accessing offset

4Small details like this can be important; see Section 6.6.

𝑂 +𝐴 of a C object. This can be problematic because the method is
defined on the derived class, and so can access derived members and
methods, but when the method is called it looks like it is on the base
class. This can result in strange-looking executable code, such as a
method that appears to access members at negative offsets.

2.4 Virtual inheritance
Virtual inheritance is a solution to the so-called “diamond problem”
in OO programming, in which a class inherits multiple copies of an
ancestor through different inheritance paths. Virtual inheritance
is a form of inheritance that indicates a class is willing to share a
copy of a base class in derived classes. In the example program, class
D virtually inherits from class VB, indicating it is willing to share a
copy of VB. Due to space restrictions, the example program does not
contain any sharing of VB. But if a class inherited from D and virtually
inherited from VB, the same instance of VBwould be shared.

The primary implementation challenge of virtual inheritance is
that the offset to virtual bases is not statically known, since it may
need to share another class’s copy. Visual C++ handles this by in-
stalling virtual base tables (vbtables) which contain the offset from
the current class’s vbptr to each virtual base. From a reverse engi-
neering perspective, vbtables reveal important information about
the virtual inheritance hierarchy [10].

2.5 Constructors and destructors
Constructors and destructors are compiled into executable func-
tions in a manner similar to that of normal methods. Unlike normal
methods, constructors and destructors perform a range of automatic
operations, such as installing vftables, vbtables, initializing base
classes, and so on. The Visual C++ ABI also dictates several types of
special helper functions for destructors. For this reason, the “main”
destructor at the executable level is called the real destructor. There
is also a deleting destructor, which calls the real destructor before
invoking delete. Finally, a special vbase destructor is created to prop-
erly destruct virtual bases. This level of detailmay seemunnecessary,
but the details matter: EmCee found a subtle flaw in which a vbase
destructor causes unsoundness in an OOAnalyzer rule (Section 6.5).
While destructors can provide important observations about the
source program, they also pose challenges to reasoning accurately.

3 Models of Correctness
In this section, we discuss what it means for a tool such as OOAn-
alyzer or VirtAnalyzer to be correct. From a user’s point of view,
correctness is straightforward. First, we assume that a developer
compiled the executable 𝛽 from a C++ source code program 𝛼dev

with a C++ compiler, using some optimization settings 𝛾dev . We
denote this as compilesto(𝛼dev, 𝛾dev, 𝛽). The user runs the tool on
executable 𝛽 , and the tool is correct if, for some C++ source code
program 𝛼 and optimizations 𝛾 such that compilesto(𝛼,𝛾, 𝛽), (1)
all of the facts output by the tool are true with respect to 𝛼 , 𝛽 , and𝛾
(this is soundness) and (2) the tool reports all relevant facts about 𝛼 ,
𝛽 , and𝛾 (this is completeness or 100% recall).

It may seem at first glance like a better definition of correctness
would be to return an answer equivalent to the original source file
𝛼dev , but there are two problems with this. First, as we showed in
Figures 1 and 2, multiple source programs can compile to exactly the
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Model Compiler Inference
Rules

Soundness
Violations

Reproduce
in MSVC?

No: Refine model compiler

Yes: Refine rules

Program Description FactsFuzzer/Testcase
Generator

Figure 8: The iterative testing and refinement process

same binary, making perfect recovery impossible. Second, in almost
all cases, the user does not know the original source program 𝛼dev ,
so pragmatically it does not matter to her which source program is
described as long as it reflects the behavior seen in the executable 𝛽 .

3.1 Local soundness under the perfect
knowledgemodel

Unfortunately, establishing global correctness is very hard. Since
OOAnalyzer and VirtAnalyzer build conclusions by chaining to-
gether applications of reasoning rules (Section 2.1), in this paper
we pursue a more tractable goal: validating each inference rule in
isolation. By ensuring that each step preserves soundness, we move
toward the larger goal of system-wide correctness. Specifically, we
establish a weaker form of correctness that we call local soundness
under the perfect knowledge model.

The perfect knowledgemodel simplymeans thatweonly consider
reasoning from a correct (sound and complete) knowledge state. A
rule is locally sound under the perfect knowledge model iff, for all
𝛼 , 𝛽 , and𝛾 such that compilesto(𝛼,𝛾, 𝛽), any conclusion made by
the rule from any correct knowledge state 𝜎 is true (with respect to
𝛼 , 𝛽 , and 𝛾 ). Since the starting state 𝜎 was correct and thus sound
by assumption, and any new conclusion is true, then any state 𝜎′

such that 𝜎
rule
{ 𝜎′ must be sound as well by definition. In essence,

this weaker form of correctness demonstrates that the rule preserves
soundness under ideal circumstances (i.e., perfect knowledge).

We focus on the perfect knowledge model in this paper because it
allows us to reason about each rule in isolation. OOAnalyzer in par-
ticular contains dozens of different rules that interact in extremely
complex ways. This makes it challenging to predict which conclu-
sions could plausibly be present in a knowledge state 𝜎 when a rule
is evaluated. The perfect knowledgemodel allows us to side-step this
question and the complications that arise from these interactions.
In practice, of course, OOAnalyzer and VirtAnalyzer do not reason
from a correct knowledge state. Indeed, their iterative nature implies
that they often reason from incomplete knowledge states. Despite
this, we have found testing under the perfect knowledge model to
be extremely effective, as we demonstrate in the remainder of the
paper.

4 Iterative testing and refinement process
overview

The cornerstone of our approach is an iterative process that uses
the compiler model to identify and correct defects in OO reasoning
rules, and as a byproduct, uses the OO rules to identify and correct
defects in the compiler model. This process is based on the following
two assumptions about OO rules. First, when an analyst writes a

rule, she expects that there is a program that can trigger it. Ana-
lysts do not (intentionally) waste their time creating rules that are
useless, though it can happen accidentally. Second, as we discuss in
Section 2.1, if the premises to a rule are satisfied by a program, then
the conclusion of the rule should be true for that program.We call
these the coverage and soundness criteria, respectively. The coverage
criteria ensures that the testing process triggers each rule at least
once, and as a consequence that the testing process is sufficient to
model many different behaviors and functionality of Visual C++.
Since we expect all rules to be triggered, failing to trigger a rule is
a sign that something went wrong. The soundness criteria simply
ensures that only true conclusions are made.

The process is depicted in Figure 8, and starts with automatically
generating test cases for the model compiler. Each test case consists
of answers to a series of multiple choice questions “asked” by the
model compiler. Figure 3 shows an example of such questions and
answers. The model compiler uses the answers in each test case
to instantiate a model of a source code program and its compiled
executable. Each analysis rule is then tested in isolation to ensure
that no soundness violations are detected for the program described
in that test case. If a soundness violation occurs, the analystmanually
replicates the problem in the real Visual C++ compiler. If the problem
can be replicated, then the rule is unsound and the analyst refines the
rule to correct the problem. If the problem cannot be replicated, then
there is a fidelity problem in the compiler model, and the analyst
refines the compiler model in order to address the problem. The
process repeats until the coverage and soundness criteria are met.

In the following sections, we describe in greater detail howwe ap-
plied the process to ourmodel compiler EmCee, and theOO recovery
systems OOAnalyzer and VirtAnalyzer.

4.1 Test case generation
Each iteration starts by running automatic test case generation tools
on the most recent revision of the model compiler. In this paper, we
used the AFL++ fuzzer (version 4.02c) [12] as our test case genera-
tor. AFL++ is a grey-box mutational fuzzer [22]. Mutational fuzzers
performmutations (e.g., bit flipping) on a set of seed inputs and run
the program on these mutated inputs. A grey-box fuzzer uses code
coverage to detect when a mutated input reaches a new program be-
havior, and adds that input to the set of seed inputs that are mutated.
In this way grey-box fuzzers like AFL++ can learn to automatically
trigger different code behaviors. In EmCee, these different behaviors
roughly correspond to different source-code program structures.
One of the strengths of this approach is that the fuzzer is not bound
by coding conventions or limited by imagination and therefore gen-
erates some truly bizarre and tricky test cases. Because we designed
EmCee’s input format to be very simple (Section 4.2), AFL++ was
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able to quickly establish a large corpus of high-coverage test cases
for the first iteration even though we gave it no seed inputs to start
with. For later iterations, we used the test cases from the previous
iteration as seed inputs to speed up the testing process.

4.2 Model Compiler: Front-end
A compiler’s front-end is responsible for reading an input specifi-
cation of a program, and converting it to an internal representation
of the program’s structure. In a real C++ compiler, this input spec-
ification is determined by the C++ language. But we have no such
requirement with EmCee, and there is good reason not to do so. C++
syntax is complicated, so many inputs aremalformed and will be re-
jected by the parser. Since these malformed inputs are not compiled,
they do not help us test OO abstraction recovery systems. Instead of
using C++ syntax, our front-end is designed around a simple princi-
ple: as long as the input is sufficiently long, always produce a high-level
program representation. To accomplish this, our compiler’s front-end
plays a game inspired by twenty questions.

In a game of twenty questions, one person thinks of an object,
and the other person attempts to guess the object by asking twenty
yes or no questions. (It is basically a gamified version of binary
search.) In our case, the user (i.e., input to the compiler) chooses
an abstracted C++ source code program, and EmCee asks multiple-
choice questions about the program until it has enough information
to instantiate a complete representation of the corresponding pro-
gram. Figure 3 in the introduction displays an example session of this
process. Note that the grey-box fuzzer we employ in this paper for
test case generation does not read the questions; it instead mutates
the answers randomly and uses code coverage to detect when a test-
case does something interesting and is worth keeping (Section 4.1).
Even though it is unaware of the questions it is “answering”, it still
benefits from the very simple input structure the questions impose.

4.3 Model Compiler: Back-end
The back-end of a compiler is responsible for translating the source-
level program representation to an “executable level” representation.
Unlike a standard compiler, EmCee’s primary output is not assem-
bly code, but rather a set of facts that describe the properties of the
program at both the source and executable levels. Rather than rein-
venting the wheel, we chose to express these facts using the same
fact language as OOAnalyzer.We chose OOAnalyzer’s fact language
because it was the first systemwe tested, but we later found that it
subsumed the types of observations that VirtAnalyzer makes too.

At a high level, OOAnalyzer contains two types of facts: initial
facts and entity facts. Figure 4 in the introduction depicts exam-
ples of both. Initial facts (Figure 4a) describe properties that can
be observed from the compiled executable using binary analysis.
For example, these include facts about data-flow, calling conven-
tions, and control flow. Entity facts (Figure 4b), in contrast, largely
describe properties of the original source code abstractions, such as
class membership, inheritance, and so on. They also include facts
about compiler-generated structures, such as vftables and whether
a method is a constructor.

EmCee was designed from the ground up to be able to emit these
facts. Similar to a conventional compiler, EmCee first translates the

source program to a compiler intermediate representation (IR). Em-
Cee differs from a typical compiler in that many operations in its IR
directly correspond to OO facts that it can emit. Although a conven-
tional compiler may have similar operations, EmCee’s operations
carry metadata to be able to correlate information about executable-
level objectswith their corresponding source-level objects, evenafter
optimizations. After the input program is translated to IR form, the
model compiler then (optionally, depending on the input) optimizes
the IR (Section 5.1). The final step of EmCee’s back-end is a light-
weight analysis that computes the set of facts describing both the
final optimized low-level code and the corresponding source-code
program.

EmCee creates a Prolog test harness for each test case. The test
harness loads the tools’ rules inProlog form, and contains all the facts
produced from the model compiler, which are expressed as Prolog
facts. For each rule, the harness contains two check predicates: one
for the soundness criteria, and the other for the coverage criteria.
The soundness predicate enumerates over every conclusionmade by
a rule, and checks whether that conclusion is true (sound) according
to EmCee. The coverage predicate outputs the information needed to
compute recall: it enumerates over every observation in the ground
truth, and determines whether that observation is concluded by
the rule. For example, if a program has 10 constructors, and rule
ConstructorB identifies 3 of them, ConstructorB has a recall of 3/10
for this program. The coverage criteria requires that each rule has a
recall greater than zero when computed over all test cases.

Since OOAnalyzer is written in Prolog, this all works out nicely.
VirtAnalyzer, on the other hand, is written in IDAPython. As we
describe in Section 7, we manually extracted the abstract rules that
were implemented in VirtAnalyzer’s code and expressed them in
Prolog.

4.4 Manual analysis
If there were any soundness errors, we picked one of the failing test
cases to analyze. Because the test cases were often quite large and
complex, we used the creduce [26] and lithium [28] file minimizers
to remove program structure unrelated to the bug in question. We
then manually examined the minimized test case using EmCee’s
introspection capabilities. The model compiler is able to emit the
source-code program in C++, and can output the IR before, during,
and after it is optimized. If the test case appeared to be a valid counter-
example of a rule, we attempted to reproduce the problem in Visual
C++. If we could reproduce the problem, this proved the rule was
unsound. Consequently, wewould refine the rule to fix the identified
problem, and start the next iteration of the refinement process. If
we could not reproduce the behavior in Visual C++, then EmCee’s
model did not match the behavior of the real compiler. In this case,
we would fix EmCee and begin the next iteration.

After many iterations, we ran out of soundness violations and
began investigating rules that were never triggered. For these, we
would manually study the rule and think of a program that should
trigger it according to the rule’s preconditions. We would then man-
ually create a test case for that program. If the rule was triggered,
we did not let the fuzzer run long enough and simply had a coverage
issue. If the rule was not triggered, wemanually debugged themodel
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to understand why the rule did not activate. We fixed the problem,
and began the next iteration.

5 Model Compiler Design Decisions
5.1 Optimizations
We have found that many challenges in OO analysis are caused by a
combination of two optimizations: inlining and unnecessary vftable
elimination.

5.1.1 Inlining. Inlining is an optimization that replaces a function
or method call with a copy of the callee’s code. This can be very
beneficial because the copy of the code that is made for each call-
site can be optimized for that specific calling context, unlocking
optimizations that would otherwise not have been possible. It also
avoids the overhead of performing a function call. From an analyst’s
point of view, however, inlining is a nightmare. Whenever we see
code in a function, we cannot simply assume that the action actu-
ally originated in that function. Instead, we must always consider if
that action could be from an inlined callee. This is most problematic
in constructors and destructors. Their regular structure provides a
great deal of information, but it can be difficult to tell if a particu-
lar action originated in that constructor, or from an inlined call to
another constructor. To make matters worse, the compiler makes a
separate decision about whether to perform inlining at each callsite.
So even if we know that inlining is enabled in a particular executable,
it can be difficult to tell whether a particular instruction is from an
inlined call.

Visual C++ employs a policy to decide whether inlining would
be beneficial, but only the basic design is public knowledge [21].
Generally speaking, the compiler will inline small amounts of code,
and will avoid inlining larger amounts of code. Thus, by artificially
adjusting the amount of code in the callee, it is fairly easy to con-
trol whether Visual C++ inlines a particular call. Since inlining is
relatively easy to manipulate, EmCee simply asks whether each call
should be inlined (instead of attempting to reverse engineer Visual
C++’s inlining policy). This level of control is beneficial in the model
compiler, because in our experience any call is capable of being in-
lined if the callee is sufficiently small. We have yet to discover any
case where a rule’s correctness hinges on this size limit.

5.1.2 Unused vftable removal. Another optimization that affects
OO analysis is unused vftable removal. This optimization observes
that in some cases there may be vftable installations that are not
needed in constructors and destructors after inlining. For example,
if a derived constructor inlines a call to a base constructor that has
no user-defined code, the vftable installation for the base class may
be optimized away. Similarly, if a trivial derived destructor inlines a
call to a base destructor, the vftable installation for the derived class
may be optimized away. Although these rules are not complicated in
isolation, the implications can be difficult to grasp, especially when
combined with multiple layers of inlining.

5.2 Fact generation andmodeling
Most facts generated by EmCee are straight-forward to emit, but
in this section we describe a few interesting design choices that we
made regarding some of the facts.

funcParameter(0x4014c0, ecx, sv_2655).
thisPtrOffset(sv_2655, 0xc, sv_630).
callParameter(0x4014cc, 0x4014c0, ecx, sv_630).
callTarget(0x4014cc, 0x4014c0, 0x401160).

Figure 9: OOAnalyzer facts stating that function 0x4014c0
receives a thisptr in register %ecx, and passes thisptr + 0xc in
a function call to 0x401160.

5.2.1 Thisptrs. One of the primary innovations of OOAnalyzer’s
predecessor, ObjDigger [19], was to statically track the data flow
of potential object pointers throughout the program. These object
pointers are called thisptrs, and are used to describe important behav-
iors such as calling a method on a sub-object and installing a vftable
into an object. OOAnalyzer uses a symbolic analysis to track the
movement of thisptrs through a function from their creation (e.g.,
as a function argument, a returned value from a function call, or a
newly allocated object). OOAnalyzer labels each thisptr by a hash
of its symbolic expression. e.g., sv_2655. OOAnalyzer also tracks
and describes simple relationships when one thisptr is a constant
offset from another. These constant offsets are sufficient to describe
the locations of sub-objects, but they are limited and cannot express
locations inside of virtual bases, which do not have constant offsets
(Section 2.4). For example, Figure 9 shows several thisptr-related
facts that demonstrate a call to a sub-object of this.

We wanted EmCee to mimic OOAnalyzer’s ability to describe
thisptr relationships that are constant offsets, but we also wanted
EmCee to track all relationships internally so that it can eventually
emit facts for non-constant offsets whenOOAnalyzer supports it. To
accomplish this,we observe that thisptrs represent the computations
of locations inside of an object. The most general case is when the
location is inside of a virtual base. To support this, EmCee models
object locations as a tuple consisting of an (optional) virtual base and
a constant offset into that virtual base (or the offset from the object’s
address if no virtual base is specified).When these locations are com-
piled to instructions, the constant offset is computed using a special
instruction, ThisPtrConstOffset. For every use of this instruction, Em-
Cee produces a thisPtrOffset fact that mimics OOAnalyzer’s current
ability. When the referenced location is inside of a virtual base, the
computation of the address of that virtual base is expressed using a
different instruction, ThisPtrVarOffset. Instances of this instruction
are currently exported to a new fact that OOAnalyzer does not use
(yet).

5.2.2 ClassCallsMethod. ClassCallsMethod is a fact in OOAnalyzer that
did not have a clear definition. In some rules, it was used to describe
methods that can be called on a class’s this pointer, i.e., methods
inherited from base classes. This definition makes sense from a
source-code perspective. In other cases, ClassCallsMethodwas used
to represent anymethod that appeared to be passed a sub-object. For
example, ifM1 passes this + 8 toM2, thenM1’s class can call method
M2. This is a more executable-oriented definition. The second def-
inition differs primarily in that it includes methods on embedded
objects (class objects that aremembers instead of base classes). More
rules used the first definition, so we adopted that definition. This
inconsistency serves as a positive example that came simply from
trying to formalize the definition of an existing fact. See Section 6.3
for a related case study.
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5.3 Limited control-flowmodeling
EmCee abstracts awaymany details of C++ compilers that are im-
material to OO analysis, such as templating and C++ syntax. Much
of OO analysis does not require analyzing control flow structures
such as conditional branches or loops. This is because OO analysis
mostly consists of analyzing compiler-generated code, which usu-
ally has straight-line control flow. As such, we decided not to model
branches or loops in the model compiler. We did find it necessary to
implement support for one case of conditional branching, however.
Virtual base constructors (constructors of classes that contain virtual
bases) take an argument indicating whether the current constructor
is the “most derived” constructor, and if so, invokes the constructor
for each virtual base. When such a constructor is called to initialize
a base object and the call is inlined, this argument will be false and
the calls to virtual bases will be optimized away. This optimization
is quite important, so we added a condition field to represent the
conditions required for compiled assembly instructions to execute. If
this condition becomes false, the instructions are dead and EmCee re-
moves them. This allows us to ignore almost all control flow, but still
emulate this important effect of inlining virtual base constructors.

6 Case studies: soundness problems in
OOAnalyzer

While applying the iterative testing and refinement process on OO-
Analyzer, we identified 27 soundness problems in 19 reasoning rules
and remedied all of them. In this section, we study a few cases of the
most interesting and common types of problems.

6.1 A classmust be at least as large as its bases
ClassSizeGTEC says that a class must be at least as large as any of its
bases. This is such an intuitive rule that it is hard to imagine that
it could be incorrect. After all, if an inner class is 𝑛 bytes, and an
outer class contains it, how could the outer class possibly be smaller
than 𝑛 bytes? Much to our disbelief, EmCee found that it is possible
because of a quirk of virtual inheritance and alignment. Figure 10
shows the counter-example5 that EmCee generated. C2, the inner
class, contains two virtual bases, which because of their contents
require seven bytes of alignment padding to be placed between them.
C3, the outer class, inherits virtually from C0, and non-virtually from
C2. Although C0 is already a virtual base of C2, this causes C0 to be
laid out before C1 in C3, and in this order requires no padding. Thus,
the derived class C3 is seven bytes smaller than its base C2.

6.2 VftableBelongsToClass

VftableBelongsToClass is one of the most important rules in OOAn-
alyzer. It is responsible for linking two important concepts in OO
executables: classesandvirtual function tables. Specifically,VftableBe-
longsToClass examines constructors and destructors for installations
ofvftables into the currentobject, andattempts todeterminewhether
the installed vftable belongs to the same class as the constructor or
destructor.

For example, in Figure 11b, which shows the assembly code for
a constructor C1::C1, VftableBelongsToClass should determine that
C1::vftable belongs to C1::C1’s class, but C0::vftable does not. (Of

5https://godbolt.org/z/4febr1szK

class C2 size (12)
0 +---
0 | {vbptr}
4 +---
4 +--- (vbase C1)
4 | var0: ClassType {0}
5 +---
5 | alignment
8 | alignment
12+--- (vbase C0)
12+---

(a) Inner class C2

class C3 size (5)
0 +---
0 | +--- (base C2)
0 | | {vbptr}
4 | +---
4 +---
4 +--- (vbase C0)
4 +---
4 +--- (vbase C1)
4 | var0: ClassType {0}
5 +---

(b) Outer class C3

Figure 10: Outer class C3 virtually inherits from inner class
C2, but C3 is unexpectedly seven bytes smaller than C2. As can
be seen in (a), when virtual base C1 preceeds virtual base C0,
Visual C++ adds seven alignment bytes. Because C3 virtually
inherits from C0, as can be seen in (b), C0 is laid out before C1,
which requires no padding.

course we can tell which class the vftables belong to by looking at
their names, but in a real reverse-engineering scenario they are not
labeled.)

VftableBelongsToClass is a complex rule, and it took us three at-
tempts to produce an implementation that is sound under perfect
knowledge. Here, we’ll only describe the most interesting problem
that EmCee discovered. Figure 11 shows the counter-example6 that
EmCee reported, but it requires some explanation. The root prob-
lem has to do with a clause in VftableBelongsToClass that detects
when vftables are overridden, and how that logic interacts with the
InitVBases branch of constructors (which we will explain shortly).
Recall from Section 2.3 that a derived class may override its base’s
vftable to override a virtual function or add new ones. VftableBe-
longsToClass contains an important clause that detects overridden
vftables and handles themappropriately. Specifically, if a constructor
C::C first installs a vftable and then installs a new vftable to the same
location, this indicates the first vftable was inherited and does not
belong to C.

As Figure 11b shows, Visual C++ adds a hidden InitVBases ar-
gument to constructors of classes that contain a virtual base. As the
name suggests, the InitVBases argument controls whether virtual
bases are constructed. The compiler sets this flag when constructing
a most-derived object (i.e., the object is not being constructed as a
base for another object). Such constructors consist of a branch that
only executes when InitVBases is set (line 3 in Figure 11b) and an
unconditional branch that always executes (line 7).

EmCee detected that when a vftable is installed for a virtual base,
the clause that detects overwritten vftableswill notwork as intended.
On line 5 of Figure 11b, the constructor installs C0’s vftable at offset 4.
Because virtual bases are only initialized when constructing a most-
derived object, the compiler statically knows the offset at which to
install the vftable. In contrast, on line 10 the constructor installs C1’s
vftable to the same location butwithout using a static offset. Because
this installation occurs on the unconditional branch, the compiler
does not statically know the location of C0, and must compute it
using a vbtable (Section 2.4). Because both vftables are installed to
the same location, C0’s vftable is overwritten and cannot belong to C1.

6https://godbolt.org/z/nTvsf3jjW
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class C1 size (8):
+---

0 | {vbptr}
+---
+--- (vbase C0)

4 | {vfptr}
+---

(a) C1’s layout

1 cmp $initVBases$[esp-4], 0
2 je SHORT $LN5@C1
3 ; initVBases branch
4 mov [ecx], C1::vbtable
5 mov [ecx+4], C0::vftable
6 $LN5@C1:
7 ; unconditional
8 mov eax, [ecx]
9 mov eax, [eax+4]
10 mov [ecx+eax], C1::vftable

(b) C1::C1 assembly snippet

Figure 11: VftableBelongsToClass counter-example that demon-
strates how two different vftables are installed to the same
location using differentmechanisms.

Unfortunately, because lines 5 and 10 reference that location in two
differentways,VftableBelongsToClass failed to detect the override, and
incorrectly determined that C0::vftablebelongs to the constructor’s
class, C1. To fix this problem, we modified VftableBelongsToClass so
that it would disregard any vftable installed on the InitVBases
branch, since OOAnalyzer cannot currently determine if they are
overridden. A longer term solution would be to analyze the vbtable
lookupsandcompute the relativeoffsets todetermine if theyoverride
any vftables installed in the InitVBases branch.

6.3 ClassCallsMethodC

TheClassCallsMethodC rule is interesting because it shows the impor-
tance of precisely defining the meaning of each fact. We also made
several mistakes when “fixing” the rule, but EmCee caught them
quickly,whichdemonstrates the iterativenature of rule development
that EmCee encourages. Originally, the rule claimed that if a method
m1 appears to call method m2 at the executable level (e.g., m1 receives
a thisptr in %ecx, and then passes the same thisptr in %ecx to m2),
then m1’s class can call m2. On the face of it, this rule seems trivially
correct. After all, we seem to have an example of m1’s class calling m2.

class C1
0 +---
0 | v0: C0
0 +---

Figure 12: Counter-example to ClassCallsMethodC

EmCeediscovered a simple counter-example to this rule, shown in
Figure 12, in which m1 is on C1, and m2 lives on C0, which is embedded
in class C1 at offset 0. As we discuss in Section 5.2.2, “callability” can
be defined in a source-oriented definition, or an executable-oriented
one. In this paper, we adopted the source-oriented definition, which
does not consider methods on embedded classes to be callable by the
outer class, and under this definition the rule incorrectly concluded
that m1’s class could call m2.

We first tried to apply a “band-aid fix”; we added a constraint that
m1’s class did not embed an object at offset 0. Testing immediately
revealed an updated counter-example, in which m1’s class inherits
from a middle-man class at offset 0, which in turn embeds m2’s class
at offset 0. As a fairly constraining solution, we changed the rule to
only apply when m1’s class contained no sub-objects at all.

We found that this formulation did not have any soundness viola-
tions, but unexpectedly had zero recall, meaning it was not triggered

class C1 size (16)
0 +---
0 | {vfptr}
4 | {vbptr}
8 +---
8 +--- (vbase C0)
8 | {vfptr}
12+---

(a) C1’s class layout

1 lea esi, [ecx+8]
2 mov ecx, esi
3 ; Call to offset 8
4 call virtual C1::~C1
5 ; Install at offset 8
6 mov [esi], C0::vftable

(b) C1’s vbase destruc-
tor assembly code
fragment

Figure 13: CtorDtorSpecial counter-example

during testing. In retrospect, the rule was designed to make observa-
tions about method calling in the case of inheritance, and the very
conservative “fix” excluded this case. When we revisited the rule,
we formulated the more precise restriction that there cannot be any
embedded object at offset 0 in the layout of m1’s class, including any
combination of inheritance and embedding. The newly formulated
rule required a bit of prolog machinery to implement, but it proved
to be sound and was actually triggered. As an extra bonus, we also
noticed that the new rule applies to calls at any offset, not just at
offset zero as it was originally formulated.

6.4 Thisptr adjustments
EmCee identified several rules that failed to correctly handle thisptr
adjustments. As we discuss in Section 2.3, Visual C++ may assign
a thisptr adjustment to virtual methods. A thisptr adjustment A
on C::M indicates that method M expects to be called with a thisptr
pointing 𝐴 bytes past the start of a C object. This means that if M
accesses offset𝑂 of its thisptr, it is actually accessing offset𝑂 +𝐴 of
a C object.

This is potentially a problem for any rule that infers something
about the layout of an object by observing some behavior at a par-
ticular thisptr offset. For example, ObjectInObjectF originally would
conclude (under some conditions) that if method M installs a vftable
into offset𝑂 , there must be an embedded object at𝑂 . However, the
rule failed to consider that M might have a thisptr adjustment. In
these cases, EmCee reported that rules such asObjectInObjectFwould
(unsoundly) conclude inner objects exist at negative offsets, which
does not make sense. In reality, the offsets had to be adjusted by M’s
thisptr adjustment.

6.5 CtorDtorSpecial

The CtorDtorSpecial rule uses an inheritance-related trick to distin-
guish whether a method is a constructor or destructor based on the
ordering of its actions. Specifically, when a derived class inherits
from a base class and overrides the base’s vftable, a derived construc-
tor will install the derived vftable after calling the base constructor,
whereas the derived destructorwill do so before. The rule onlyworks
when the call to the base constructor or destructor is not inlined. The
rule presumes there is no other way for such call-and-install pairs to
be produced.

Figure 13 shows the counter-example7 that EmCee discovered,
which demonstrates that call-and-install pairs can also be produced
by a vbase destructor under certain conditions. As can be seen in
Figure 13b on lines 4 and 6, there appears to be amethod call at offset
7https://godbolt.org/z/x8zh1WPMG
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8 followed by a vftable install to the same offset. Since the vftable
install follows the method call, it fools the CtorDtorSpecial rule into
concluding that the vbase destructor is a constructor.

You may be wondering why the call on line 4 appears to be at
offset 8, when both the caller and calleemethods are on C1. The callee
is C1::~C1, which is a virtual function that overrides the inherited
virtual function C0::~C0. As a result, C1::~C1has a thisptr adjustment
of 8,which explainswhy it appears to be called at offset 8. The vftable
install on line 6 comes from the inlined call to C0::~C0.

This is a another example of howmultiple behaviorswhich are un-
derstood in isolation can interact in very complex ways. Specifically,
this counter-example requires C1::~C1 to have a thisptr adjustment;
simultaneously, the vbase destructor’s call to C0::~C0 must be in-
lined, but the call to C1::~C1must not be. This is a lot for a human
analyst to consider.

6.6 NOTConstructorG

NOTConstructorG is an interesting rule for a few reasons. First, it is
simple to state, but the justification for the rule is quite complex.
Second, its behavior depends on some very low-level details about
how Visual C++ lays out classes. Because of these reasons, this rule
demonstrates how cognitively difficult it can be to reason about the
correctness of rules. Perhaps unsurprisingly, EmCee uncovered a
subtle flaw that occurs when some calls in the program are inlined,
and others are not.

The rule itself claims that if method 𝑐𝑎𝑙𝑙𝑒𝑟 calls method 𝑐𝑎𝑙𝑙𝑒𝑒
at offset 0, and 𝑐𝑎𝑙𝑙𝑒𝑟 installs a vftable at offset 0, then 𝑐𝑎𝑙𝑙𝑒𝑒 can
only be a constructor if it too installs a vftable at offset 0. This rule is
notable in that it does not require 𝑐𝑎𝑙𝑙𝑒𝑒 to be on 𝑐𝑎𝑙𝑙𝑒𝑟 ’s class, and
can be applied even if it is unknownwhether the twomethods are
on the same class. As we said earlier, the justification for the rule is
complex, and has three cases depending on the callee. (1)𝐶𝑎𝑙𝑙𝑒𝑒 is
the constructor for the 𝑐𝑎𝑙𝑙𝑒𝑟 ’s base class at offset 0. In this case, the
𝑐𝑎𝑙𝑙𝑒𝑒’s class must have a vfptr at offset 0. If it did not, 𝑐𝑎𝑙𝑙𝑒𝑟 ’s class
would have its vfptr at offset 0, which means that the base class
could not also be at offset 0. Because its class has a vfptr, 𝑐𝑎𝑙𝑙𝑒𝑒
must install a vftable if it is a constructor. (2)𝐶𝑎𝑙𝑙𝑒𝑒 and 𝑐𝑎𝑙𝑙𝑒𝑟 are on
the same class.We know from 𝑐𝑎𝑙𝑙𝑒𝑟 ’s vftable installation that it has
a vfptr. Therefore, 𝑐𝑎𝑙𝑙𝑒𝑒 must install a vftable if it is a constructor.
(3)𝐶𝑎𝑙𝑙𝑒𝑒 is on an embedded class at offset 0. This case is not possible.
The𝑐𝑎𝑙𝑙𝑒𝑒’s classmust own the vfptr. The𝑐𝑎𝑙𝑙𝑒𝑟 ’s class cannot own
the vfptr because 𝑐𝑎𝑙𝑙𝑒𝑟 ’s class is already embedded at offset 0. The
only way that 𝑐𝑎𝑙𝑙𝑒𝑟 ’s class could install a vftable into an embedded
class is through inlining, but the call to 𝑐𝑎𝑙𝑙𝑒𝑒 is visible, so it is not
inlined.

During the testing process, EmCee made us aware of a special
subcase that we did not think of: when 𝑐𝑎𝑙𝑙𝑒𝑒 is a constructor for
an empty base class (Figure 14). The rule happened to handle this
correctly, but again the justification is complex. Say that C2 inherits
from an empty base class C1, and then C0, which has a vftable8. If
laid out in order, both C1 and C0 would be located at offset 0 of C2,
and the rule would unsoundly conclude that the constructor of the
empty base class C1was not a constructor because it did not install a
vftable at offset 0. However, because C0 has a vfptr field that it can
reuse, Visual C++ will place it first (Section 2.2), regardless of the

8https://godbolt.org/z/T9bWfhhPo

source-code order. The empty base class C1will be located at offset 4,
and the rule will (correctly) not apply. This is an example where the
correctness of a rule depends on a very fine detail of the compiler
(i.e., re-ordering base classes when a vfptr field is reused).

class C2 size (4)
0 +---
0 | +--- (base C0)
0 | | {vfptr}
4 | +---
4 | +--- (base C1)
4 | +---
4 +---

Figure 14: Complex case in NOTConstructorGwhen the base
class is empty.

Although the rule handled the above example correctly, EmCee
found that a combination of inheritance, embedding, and inlining
can still trigger a problemwith empty base classes (Figure 15). Specif-
ically, if C2 inherits from an empty base class C0 and then embeds
C1, which contains a vftable, inlining can cause C2::C2 to consist of a
call to C0::C0 and C1’s vftable to be installed at offset 09. For this to
happen, C1::C1must be inlined into C2::C2, but C0::C0 cannot be.

class C2 size (4):
+---

0 | +--- (base C0)
0 | +---
0 | C1 c1

+---

Figure15:Counter-example toNOTConstructorGwhenthebase
class is empty.

6.7 NOTRealDestructorG

NOTRealDestructorG is the analog of NOTConstructorG (Section 6.6)
but for destructors instead of constructors. It claims that if a caller
installs a vftable to offset 0, and calls a callee at offset 0, then the
calleemay only be a real destructor if it also installs a vftable to offset
0. Unfortunately, the destructor version of this rule is fundamentally
flawed because although default constructors install vftables, default
destructors do not. Thus, if the callee is a default destructor, it can be
a destructor but not install a vftable. Lacking a better solution, we
disabled this rule.

7 Case Study: VirtAnalyzer
In this section, we explore the generality of EmCee by applying it to
another popular system for OO analysis, VirtAnalyzer [10]. Rather
than being constructed as a set of cooperating rules, VirtAnalyzer
consists of several algorithms that are executed sequentially. The
core algorithm, which identifies virtual inheritance relationships,
is based on a simple premise: if VirtAnalyzer finds a constructor or
destructor that appears to install a vbtable into the current object,
it analyzes the vbtable as follows. If the vbtable reveals that the
object has a virtual base at offset𝑂 , VirtAnalyzer looks for a method
call at offset𝑂 . If it finds one, it reasons that the called method is a
constructor or destructor for the virtual base, and concludes there is a
9https://godbolt.org/z/hT74G3Gzj
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virtual inheritance between the outer constructor (or destructor) and
the inner constructor (or destructor). At a high level, this reasoning
is valid, and OOAnalyzer contains a rule inspired by the same idea.
But following the theme of this paper, the devil is in the details.

We tested VirtAnalyzer’s reasoning algorithm by converting it
into an OOAnalyzer rule that implements the same logic, which
can be found in Section A. We based our rule on the open-source
VirtAnalyzer implementation forVisualC++binaries [2].Weverified
each flaw10 by producing an executable compiled by MSVC that
reproduced the flaw in the original VirtAnalyzer implementation [2].

7.1 Magic Offsets

class C3 size (8)
0 +---
0 | {vbptr}
4 | var0: Class {1}
5 | alignment
8 +---
8 +--- (vbase C0)
8 +---

Figure 16: Magic offsets counter-example

EmCee quickly found a problem (shown in Figure 16) with the way
that VirtAnalyzer reasons about vbptr offsets, the offset between
the start of an object and its vbptr. Each offset 𝑂 in a vbtable is
actually an offset from the vbptr, which is not always the start of the
object (Section 2.4). VirtAnalyzer addresses this with a list ofmagic
offsets that it considers as possible vbptr offsets. To bemore specific,
when VirtAnalyzer sees an offset𝑂 in a vbtable, it adds each magic
offset𝑀𝑂 to𝑂 , and if there appears to be a method call at𝑂 +𝑀𝑂 ,
it concludes the callee is on the virtual base. EmCee found that this
can cause VirtAnalyzer to mistake an embedding relationship for
virtual inheritance. For example, in thismodel,11 C3 virtually inherits
from C0 at offset 8, so C3’s vbtable contains an entry of 8 (since C0

is located at offset 8 from the vbptr at offset 0). C3 also embeds a C1
object at offset 4; as a result, C3’s constructor calls C1’s constructor
at offset 4. Unfortunately, because VirtAnalyzer includes a magic
offset value of −4, VirtAnalyzer mistakenly associates this call with
C0 instead of C1 because 8 + −4 = 4, which matches the observed
method call offset. As a result, VirtAnalyzer incorrectly concludes
that C3 virtually inherits from C1.

Fortunately, there is a simple solution. Rather than trying each
magic value as a possible offset, MSVC stores the vbptr’s offset in
the first entry of every vbtable. One can simply use this stored value
as the offset. It also applies more generally, because it allows for
vbptr offsets that are not covered by the static list of magic offsets.

7.2 Constructor inlining
The next problem that EmCee found was that VirtAnalyzer’s rea-
soning algorithm fails to soundly reason about inlined constructors
when multiple objects start at the same offset. For example, in Fig-
ure 17,12 C2 virtually inherits from class C1 at offset 4, but C1 also
embeds a C0 object at the same location.
10This excludes the inherited vbptrs flaw (Section 7.3), sincewe inadvertently introduced
that ourselves when attempting to fix the magic offsets flaw (Section 7.1).
11https://godbolt.org/z/zxneK7aob
12https://godbolt.org/z/Eoozajchx

class C2 size (7)
0 +---
0 | {vbptr}
4 +---
4 +--- (vbase C1)
4 | var0: Class {0}
5 | var1: Class {0}
6 | var2: Class {0}
7 +---

Figure 17: Inlined constructors counter-example

Without inlining, C2::C2will call C1::C1 at offset 4, which will call
C0::C0 at C1’s offset 0. The problem occurs when C1::C1 is inlined into
C2::C2, but C0::C0 is not inlined into C1::C1.When this happens, C2::C2
calls C0::C0 at offset 4, which VirtAnalyzer incorrectly interprets as
C0::C0 being a constructor for C2’s virtual base class C1, since it is
stored at the same offset.We fixed this rule by ensuring that only one
object starts at the relevant offset, which ensures there is no ambigu-
ity aboutwhich object’s constructor is invoked.Unfortunately,while
this type of constraint is possible in OOAnalyzer, we are not aware
of a practical solution for the actual VirtAnalyzer implementation.

7.3 Inherited vbptrs

class C2 size (8)
0 +---
0 | {vfptr}
4 | +--- (base C1)
4 | | {vbptr}
8 | +---
8 +---
8 +--- (vbase C0)
8 +---

Figure 18: Inherited vbptrs counter-example

In Section 7.1, we fixed a soundness problem by leveraging the offset
from the vbptr to the start of the object, which is always stored in
the first entry of a vbtable. But this offset is to the object that owns
the vbptr, which is not always the class that owns the vbtable. This
is further exacerbated by inlining, which obscures the object that
owns the vbptr.

In Figure 18,13 C1 owns the vbptr, which is located at offset 0 of
C1, and so the first entry of C1’s vbtable is zero. Since C2’s vbtable is
also installed in C1’s vbptr, the first entry of C2’s vbtable is also zero,
even though the vbptr is at offset 4 of C2. EmCee found that when
C1’s constructor is inlined into C2’s constructor, the rule thinks that
C2 owns the vbptr. This is a problem, because it interprets the zero
offset as being the start of C2 rather than C1, which is located at offset
4 in C2. Thus, it wrongly concludes that C2 inherits from C0 at offset
4 (instead of at offset 8).

The solution is to use the offset at which the vbtable is installed to,
which is visible from the constructor’s assembly code, rather than the
offset in the first entry of the vbtable. We want to emphasize thatwe
introduced this soundness violation in our first “fix” to VirtAnalyzer,
and that VirtAnalyzer’s authors did not make this mistake. But we
included it here because it demonstrates another example of how
EmCee encourages an iterative approach to rule development by
quickly identifying faulty changes.

13https://godbolt.org/z/bKx3Ws586
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// Part 1: Class definitions
class C0 {...}; class C1 : C0 {...};

// Part 2a: verify class size
const C1* obj = new C1(special_constructor());
const size_t vc_size = sizeof(C1);
assert(vc_size == 4);
// Part 2b: verify base offset
const C0* baseobj = (C0*) obj;
size_t c = (uintptr_t)baseobj - (uintptr_t)obj;
assert(c == 4);

Figure 19: Example validation program

8 Model Validation
Because our approach to testing is model-based, it is critical for
the model to accurately reflect the behavior of the real Visual C++
compiler. As we note in Section 4, the refinement process itself iden-
tifiedmany bugs in themodel. In this section, we describe additional
validation (and repair) that we performed after the refinement pro-
cess finished. Specifically, we explicitly validate EmCee’s ability to
construct a class’s data layout (Section 2.2).

EmCee can produce a C++ program that is then compiled with
Visual C++ and executed to validate that the model’s layout matches
the one produced by Visual C++. The program consists of two parts,
as shown in Figure 19. The first portion includes a reconstruction
of the test case’s source code program. The second portion consists
of automatically generated checks which compares the data layout
assigned by the Visual C++ compiler with the layout determined by
the model. For each class C, the program computes the size of the
class using sizeof(C) and compares it to the model’s computed size
of the class, which is hard-coded into the program. Similarly, for
each base B of C, the program computes the offset from the start of
C to the embedded location of base B. This indirectly validates the
model’s understanding of padding and alignment, and the offsets of
individual fields. The resulting executablewill emit an errormessage
for any disagreement.

8.1 Discovered discrepancies
While validating the data layout of our model compiler, we found
manyprogramswhere themodel’s layout didnotmatchVisualC++’s
layout. In the process, we (re)discovered several bizarre data layout
behaviors in the Visual C++ ABI.

The empty base optimization (EBO) allows empty base classes to
take zero space in an object. We rediscovered an old bug in Visual
C++14, which is that it only applies EBO to the last empty base on a
class. In Figure 20, classes EB0 and EB1 are both empty, but EB0 takes
one byte while EB1 takes zero because of EBO. Normally, EBOwould
allocate zero bytes for both classes. Knowledge of this bug dates
back to at least 2006 but it remains unfixed in Visual C++ 2019 unless
one uses a special class declaration. The problem is that the bug has
effectively become encoded into Visual C++’s ABI.

We also encountered a confusing condition where Visual C++
unexpectedly adds more padding than is necessary (Figure 21). We
are not the first to notice this unusual problem [18]. One of Visual
C++’s authors explained that the padding is needed because vfptr
and vbptr fields are added after other fields are already laid out. The

14https://stackoverflow.com/a/12714226/670527

class C1 size (2):
+---

0 | +--- (base EB0)
| +---

1 | +--- (base EB1)
| +---

1 | bool first_mem
+---

Figure 20: Empty base optimization counter-example

extra alignment is added to preserve each fields natural alignment.
For example, if a fieldmust be 8-byte aligned and a 4-byte vfptrfield
is added, the 8-byte alignment would be broken without additional
padding.

class C1 size (24):
+---

0| {vfptr}
8| long x

12| <alignment > (4)
16| long long y

+---

Figure 21: Unexpected padding counter-example

The final unexpected feature was that Visual C++ adds one byte
of padding between bases to avoid aliasing between zero-sized bases.
For example, in Figure 2215, there is a byte of padding at offset 4
between classes C2 and C0.

class C3 size (8):
+---

0| +--- (base C2)
0| | C1 v1
0| +---
5| +--- (base C0)
| +---
| <alignment > (sz=3)

Figure 22: Padding between bases counter-example

9 Discussion
9.1 Tension Between Soundness and Accuracy
The original motivation of this project was to proactively prevent
soundness failures from interfering with OOAnalyzer’s execution
(as opposed to improving accuracy). OOAnalyzer can detect un-
soundness in certain cases. When it does, it intentionally terminates
and prompts the user to file an issue. Before EmCee, this was how
we learned about most soundness problems in OOAnalyzer. Over
time, we found that some rules would repeatedly cause problems.
One of the most notorious problems was the VftableBelongsToClass
rule (Section 6.2). We would diligently analyze the issue, refine our
understanding, and implement fixes, only to learn (in a new issue)
that we had not fully addressed the underlying problem. It became
apparent that we were approaching the limits of what we could do
without having some form of assistance. EmCee has allowed us to
largely eliminate these types of problems.16

15https://godbolt.org/z/1brshxGG7
16As a timely but anecdotal example, as we were writing this paper we received a report
of a new soundness issue in one of the few rules we had not tested in this paper.
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Despite this success, when we embarked on this project, we also
expected that addressing the discovered issues would lead to im-
proved accuracy. However, we found that addressing soundness
failures generally had a negative impact on accuracy. There are a
few reasons for this, but fundamentally there is a tension between
soundness and accuracy because accuracy is weighted by frequency
and soundness is not. To illustrate this tension, imagine a rule that is
correct for 99.9% of real-world programs, and improves overall accu-
racy by 5% on a representative benchmark. When viewed through
the lens of accuracy, the rule is clearly beneficial, since it improves
accuracy by a substantial margin, and is only incorrect for a small
fraction of programs. But when viewed through the lens of sound-
ness, it does not matter that it is only incorrect for a small fraction of
programs: it is unsound, full stop. The real tension depends on how
difficult it is to repair the unsound rule. In the best case scenario,
the unsound condition can be easily characterized and filtered out
by adding an additional clause to the rule that prevents only the
unsound conclusions. In this case, we can eliminate the unsoundness
but keep the improvement to accuracy; everyone wins! In the worst
case, however, it is not possible to distinguish sound from unsound
conclusions, and we need to disable the rule in its entirely. This
would “cost” us 5% accuracy, even though it might only negatively
impact a small subset of programs.

Thisptr adjustments are a good example of this tension (Sec-
tions 2.3 and 6.4) because they impact many rules, are not easily
detected, and are only present in (relatively) complex inheritance
hierarchies. Remember that thisptr adjustments occur when a de-
rived class overrides a virtual function in a base class. For there to be
a non-zero thisptr adjustment, the programmust contain multiple
inheritance. Unfortunately, it is difficult to knowwhether there is
a thisptr adjustment. If we know a class does not inherit from any
bases, we know there is not a thisptr adjustment for that class. But
this is tricky, because the best evidence for not having base classes is
simply a lack of evidence for base classes. This type of problem leads
to negation and ordering challenges: if we did not find evidence for
inheritance, is it because there is no inheritance, or because we have
not yet found the evidence? In OOAnalyzer, we addressed this by
implementing a hypothetical reasoning rule that, in the absence of
evidence to the contrary, assumes that there is no inheritance, and
thus no thisptr adjustment. Unlike the reasoning rules we discuss in
this paper, hypothetical reasoning rules are allowed to make untrue
conclusions by design, but happen later in the overall reasoning
process. Unfortunately, delaying such decisions can substantially
change the order in which OOAnalyzer’s rules interact, which in
turn can alter accuracy by itself.

9.2 FutureWork
EmCee is a proof of concept implementation of our more general
iterative testing and refinement process (Section 4). Although the
process is not specific to any architecture, EmCee itself is limited
in that it only models the MSVC compiler for 32-bit x86 code. This
is largely because we first applied EmCee to refine OOAnalyzer,
which has the same limitation. The largest obstacle to adding sup-
port for 64-bit and the Itanium ABI (e.g., Linux) is actually a lack of
support from pre-existing OO abstraction recovery tools. Although
VirtAnalyzer supports 64-bit and the Itanium ABIs, it consists of far

fewer rules than OOAnalyzer. This is problematic because, in our
iterative approach, the OO analysis tools also help identify inconsis-
tencies in the model compiler. Intuitively, the more reasoning that
a tool performs, the more the model compiler will be stress tested.
Based on our experience with EmCee, we believe the best way to
add support for both 64-bit and the Itanium ABI executables would
be to begin the iterative process using VirtAnalyzer, and then to
implement the new features in OOAnalyzer. Our experience with
repairing the faulty rules in this paper leads us to believe that employ-
ing our proposed refinement process will make implementing these
features significantly easier by providing an immediate feedback
mechanism. Specifically, we found that when EmCee immediately
detected problems in rules we "fixed," it naturally encouraged rapid
iterative development (Sections 6.2 and 7.3).

10 RelatedWork
10.1 Recovery of C++ Abstractions
The problem of recovering C++ abstractions from executables has
been studied for years. Early work focused on leveraging obvious
sources of data such as vftables and RTTI metadata, but more re-
cently, researchers have been studying how to recover abstractions
for non-polymorphic classes (i.e., classes without virtual functions)
using other sources of data. ObjDigger [19], OOAnalyzer’s predeces-
sor, pioneered the idea of statically tracking the data flow of object
pointers throughout the program, and roughly collecting a map be-
tween object pointers and themethods they appear to be invoked on
using static binary analysis. With this data, ObjDigger was able to
assign methods to classes in the presence of relatively simple class
hierarchies. OOAnalyzer [32] expanded on the idea of tracking the
data flow of object pointers, but observed that accurately making
conclusions from such observations can be very difficult in larger
programs. To address this, OOAnalyzer added a Prolog-based rule
system to help make additional conclusions from the set of existing
conclusions. OOAnalyzer’s authors also observed that some proper-
ties are ambiguous, and devised a system of hypothetical reasoning
that backtracks when the reasoning process detects a contradiction.

Lego [33] is another early system that is notable in its ability to
recover information about non-polymorphic classes. LikeObjDigger
and OOAnalyzer, Lego gathers information about the methods that
are invoked on various object pointers. Unlike those systems, Lego
gathers this information by employing dynamic binary analysis.
That is, it runs the program on test cases and records a trace of
method calls.

Several systems are able to recover the class hierarchy for only
polymorphic classes (i.e., classes with a virtual function) by either (1)
utilizing RTTI (run-time type information) metadata that is some-
times included in executables [13, 14, 36], or (2) analyzing virtual
function tables, constructors, and destructors [10, 13, 14]. Smart-
Dec [13, 14] is an executable to C++ decompiler that can use RTTI
metadata to recover the polymorphic class hierarchy. If RTTI is un-
available, it will analyze vftables, constructors, and destructors to
recover the hierarchy. More recently, the VirtAnalyzer system [10]
was introduced, which also recovers the class hierarchy using a
combination of vftable, constructor and destructor analysis. The
VirtAnalyzer system focuses on correctly recovering instances of
virtual inheritance (Section 2.4) in the class hierarchy, which they
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show to be pervasive and important for security protections. They
note that most existing abstraction recovery systems do not handle
virtual inheritance correctly. Our experience in this paper supports
the notion that reasoning about virtual inheritance can be challeng-
ing and unintuitive.

10.2 Security protections for C++ binaries
Another body of research that utilizes C++ abstractions is the work
on security protections such as control-flow integrity (CFI). Early
CFI systems would automatically infer expected control-flow transi-
tions from source code, and would include runtime checks to ensure
that the programwas safely terminated if any unexpected control-
flow transitions were taken [1, 4]. Subsequently, researchers demon-
strated that similar protections can be added to executables without
requiringaccess to sourcecode [35, 39]. Several attacksdemonstrated
that some CFI systems were permitting too many executions in the
name of lowering overhead [5, 6, 11, 17, 31], and in response, several
systems were proposed that incorporate specific protections for C++
features [9, 23, 24, 37] to achieve stronger protections. vfGuard [24]
and VTint [37] both recover information about virtual call sites
and vftables. More recent work has also focused on recovering in-
formation about the inheritance hierarchy, including VCI [9] and
MARX [23]. Improved recovery of OO abstractions from executables
allows for improved security in such systems without the aid of
source code for the protected program.

10.3 Provable decompilation
This paperwas inspired by one of the first papers on provably correct
decompilation and type recovery by Robbins et al. [27]. Althoughwe
do not think of OOAnalyzer as a decompiler, the OO abstractions it
recovers canbe thoughtof asa subsetof thedecompilationprocess. In
Robbins, theauthors formallydefineasimpleprogramming language
based onC,MinC, and a low-level assembly code based on x86,MinX.
They formally define a structural semantics for each language,which
they then use to define a decompiler relation from a low-level MinX
program back to a corresponding MinC program. They formally
prove that their decompilation relation is conservative. One of the
high-level ideasweborrowfromtheir paper is that it isfirstnecessary
to have a definition of forward compilation in order to define the
correctness ofdecompilation. In their case, a definitionof compilation
naturally arises for pairs of MinX and MinC programs that have
equivalent semantics. In other words, their decompiler does not
leverage knowledge about the compiler’s behavior. In our work,
we focus on a particular compiler; by using our knowledge of how
the compiler implements certain high-level program structures, we
are better able to relate those implementations back to high-level
structure.

There are several other papers relating to provably correct de-
compilation. FoxDec [34] is a sound x86-64 to C decompiler. Rather
than targeting a specific compiler, they prove that each phase of the
decompilation process is sound (i.e., does not change the semantics
of the program). A very different approach to correct decompilation
is perfect or exact decompilation [3, 30], in which the goal is to re-
cover source code that, when compiled, produces binary code that is
syntactically identical to the original (and thus trivially semantically

equivalent). C++ object layout has also been studied in the context
of provably correct compilation [25].

11 Conclusion
OO abstraction recovery is an extremely challenging problem, and
even state-of-the-art tools are unsound. In this paper, we proposed a
newmodel-based technique for systematically testing C++ abstrac-
tion recovery systems. We created EmCee, a model compiler that
closely mimics the behavior of Microsoft’s Visual C++ compiler on
32-bit x86 executables. We used EmCee to systematically test and
refine the rules of the two leading C++ abstraction recovery systems,
OOAnalyzer and VirtAnalyzer. Although we applied our technique
retroactively, we believe that the iterative nature of rule develop-
ment that our approach encourages will accelerate the creation of
reasoning rules for new architectures and compilers, as well as open
the door to rules that were previously too difficult for a human to
understand.
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A VirtAnalyzer RuleModeling
Figure 23 displays the implementation of the primary reasoning rule
of VirtAnalyzer [2, 10] in OOAnalyzer’s rule language, which we
test in Section 7.We based our rule on the open-source VirtAnalyzer
implementation for Visual C++ binaries [2].
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reasonDerivedClass_VirtAnalyzer(DerivedClass, BaseClass, AdjustedOffset, virtual) :-
% We see the outer method installing a vbtable
factVBTableWrite(_Insn, OuterMethod, _UnusedObjVBPtrOffset, VBTableAddress),

% And a vftable
factVFTableWrite(_Insn2, OuterMethod, _UnusedObjVFPtrOffset, _UnusedVFTableAddress),

% VirtAnalyzer uses "vbase magic" offsets as a signature to detect vbtables
% (0, 0xffffff20, 0xffffffc0, 0xfffffe28, 0xfffffffc, 0xfffffff8)
MagicOffsets = [0, 4, 8, 64, 224, 472],
factVBTableEntry(VBTableAddress, 0, NegativeVBPtrOffset),
VBPtrOffset is -NegativeVBPtrOffset,
member(VBPtrOffset, MagicOffsets),

% The signature passed. Now they look at a non-zero vbtable entry
factVBTableEntry(VBTableAddress, TableOffset, ObjOffset),
TableOffset > 0,

% VirtAnalyzer computes an adjusted offset, trying each of the magic offsets
member(MagicOffset, MagicOffsets),
AdjustedOffset is ObjOffset - MagicOffset,

% We see a call at AdjustedOffset
callTarget(CallInsn, OuterMethod, InnerMethod),
funcParameter(OuterMethod, ecx, ThisPtr),
thisPtrOffset(ThisPtr, AdjustedOffset, CalleeThisPtr),
callParameter(CallInsn, OuterMethod, ecx, CalleeThisPtr),

find(OuterMethod, DerivedClass),
find(InnerMethod, BaseClass).

Figure 23: Re-implementation of VirtAnalyzer’s main reasoning rule for Visual C++ executables in OOAnalyzer’s rule language.
Our implementation is based on this code [2].
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